• Title/Summary/Keyword: microbial synthesis

Search Result 255, Processing Time 0.026 seconds

Near Infrared Spectroscopy for Measuring Purine Derivatives in Urine and Estimation of Microbial Protein Synthesis in the Rumen for Sheep

  • Atanassova, Stefka;Iancheva, Nana;Tsenkova, Roumiana
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1273-1273
    • /
    • 2001
  • The efficiency of the luminal fermentation process influences overall efficiency of luminal production, animal health and reproduction. Ruminant production systems have a significant impact on the global environment, as well. Animal wastes contribute to pollution of the environment as ammonia volatilized to the air and nitrate leached to ground water. Microbial protein synthesis in the rumen satisfies a large proportion of the protein requirements of animals. Quantifying the microbial synthesis is possible by using markers for lumen bacteria and protozoa such as nucleic acids, purine bases, some specific amino acids, or by isotopic $^{15}N,^{32}P,\;and\;^{35}S$ labelled feeds. All those methods require cannulated animals, they are time-consuming and some methods are very expensive as well. Many attempts have been made to find an alternative method for indirect measurement of microbial synthesis in intact animals. The present investigations aimed to assess possibilities of NIRS for prediction of purine nitrogen excretion and ruminal microbial nitrogen synthesis by NIR spectra of urine. Urine samples were collected from 12 growing sheep,6 of them male, and 6- female. The sheep were included in feeding experiment. The ration consisted of sorghum silage and protein supplements -70:30 on dry matter basis. The protein supplements were chosen to differ in protein degradability. The urine samples were collected daily in a vessel containing $60m{\ell}$ 10% sulphuric acid to reduce pH below 3 and diluted with tap water to 4 liters. Samples were stored in plastic bottles and frozen at $-20^{\circ}C$ until chemical and NIRS analysis. The urine samples were analyzed for purine derivates - allantoin, uric acid, xantine and hypoxantine content. Microbial nitrogen synthesis in the lumen was calculated according to Chen and Gomes, 1995. Transmittance urine spectra with sample thickness 1mm were obtained by NIR System 6500 spectrophotometer in the spectral range 1100-2500nm. The calibration was performed using ISI software and PLS regression, respectively. The following statistical results of NIRS calibration for prediction of purine derivatives and microbial protein synthesis were obtained.(Table Omitted). The result of estimation of purine nitrogen excretion and microbial protein synthesis by NIR spectra of urine showed accuracy, adequate for rapid evaluation of microbial protein synthesis for a large number of animals and different diets. The results indicate that the advantages of the NIRS technology can be extended into animal physiological studies. The fast and low cost NIRS analyses could be used with no significant loss of accuracy when microbial protein synthesis in the lumen and the microbial protein flow in the duodenum are to be assessed by NIRS.

  • PDF

Effect of inclusion of different levels of Leucaena silage on rumen microbial population and microbial protein synthesis in dairy steers fed on rice straw

  • Nguyen, Thien Truong Giang;Wanapat, Metha;Phesatcha, Kampanat;Kang, Sungchhang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.2
    • /
    • pp.181-186
    • /
    • 2017
  • Objective: Leucaena leucocephala (Leucaena) is a perennial tropical legume that can be directly grazed or harvested and offered to ruminants as hay, silage, or fresh. However, Leucaena contain phenolic compounds, which are considered anti-nutritional factors as these may reduce intake, digestibility and thus animal performance. Therefore, the objective of this experiment was to determine effects of Leucaena silage (LS) feeding levels on rumen microbial populations, N-balance and microbial protein synthesis in dairy steers. Methods: Four, rumen fistulated dairy steers with initial weight of $167{\pm}12kg$ were randomly assigned to receive dietary treatments according to a $4{\times}4$ Latin square design. Treatments were as followings: T1 = untreated rice straw (RS; Control), T2 = 70% RS+30% LS, T3 = 40% RS+60% LS, and T4 = 100% LS. Dairy steers were fed rice straw and LS ad libitum and supplemented with concentrate at 0.2% of body weight/d. Results: Results revealed that the rumen microbial population, especially cellulolytic, proteolytic bacteria and fungal zoospores were enhanced in steers that received 60% of LS (p<0.05), whereas the amylolytic bacteria population was not affected by treatments (p>0.05). Protozoal population was linearly decreased with increasing level of LS (p<0.05). Moreover, N-balance and microbial protein synthesis were enhanced by LS feeding (p<0.05) and were the highest in 60% LS group. Conclusion: Based on this study, it could be concluded that replacement of RS with 60% LS significantly improved microbial population and microbial protein synthesis in diary steers.

Potential for Efficient Synthesis of GSH Utilizing GCS1 and GLR1 Mutant Strains of Candida albicans

  • Jaeyoung SON;Min-Kyu KWAK
    • The Korean Journal of Food & Health Convergence
    • /
    • v.10 no.2
    • /
    • pp.7-11
    • /
    • 2024
  • Glutathione (GSH) is a vital compound composed of glutamic acid, cysteine, and glycine, crucial for cellular functions including oxidative stress defense and detoxification. It has widespread applications in pharmaceuticals, cosmetics, and food industries due to its antioxidant properties and immune system support. Two primary methods for GSH synthesis are enzymatic and microbial fermentation. Enzymatic synthesis is efficient but costly, while microbial fermentation, particularly using yeast strains like Candida albicans, offers a cost-effective alternative. This study focuses on genetically modifying C. albicans mutants, specifically targeting glutathione reductase (GLR1) and gamma-glutamylcysteine synthetase (GCS1) genes, integral to GSH synthesis. By optimizing these mutants, the research aims to develop a model for efficient GSH production, potentially expanding its applications in the food industry.

Effect of Protein Sources on Rumen Microbial Protein Synthesis Using Rumen Simulated Continuous Culture System

  • Joo, J.W.;Bae, G.S.;Min, W.K.;Choi, H.S.;Maeng, W.J.;Chung, Y.H.;Chang, M.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.3
    • /
    • pp.326-331
    • /
    • 2005
  • A rumen simulated continuous culture (RSCC) system was used to study the influence of supplementation of the three different types of protein sources such as urea, casein and soy protein on rumen microbial synthesis in terms of rumen microbial synchronization. The urea treatment showed the highest pH value. Ammonia nitrogen concentration was rapidly increased after feeding and not significantly different in the urea treatment (13.53 mg/100 ml). Protozoa numbers were not significantly different for soy protein and casein treatment compared to urea treatments during incubation. The average concentration of total VFA (mMol) was not detected with significant difference among treatments, but iso-butyrate production showed the highest for soy protein treatment among treatments (p<0.001). The lowest concentration in total iso-acids (iso-butyrate and iso-valerate) production was observed in urea treatment. The soy protein treatment showed no significantly change in acetate/propionate. The amounts of dry matter (DM) out flow showed no significant difference among treatments. Organic matter (OM) flow was the highest for urea treatments and the lowest for casein treatment (p<0.03). The nitrogen flow for casein treatment was not significantly different from other treatments. The efficiency of microbial protein synthesis in terms of microbial nitrogen (MN) synthesis (g MN/kg ADOM) digested in the rumen was highest for casein treatment (58.53 g MN/kg ADOM) compared to soy protein and urea (p<0.05). This result suggests that rumen ammonia releasing rate may influence on microbial protein synthesis in the rumen.

Effects of Physical Form and Urea Treatment of Rice Straw on Rumen Fermentation, Microbial Protein Synthesis and Nutrient Digestibility in Dairy Steers

  • Gunun, P.;Wanapat, M.;Anantasook, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.12
    • /
    • pp.1689-1697
    • /
    • 2013
  • This study was designed to determine the effect of physical form and urea treatment of rice straw on rumen fermentation, microbial protein synthesis and nutrient digestibility. Four rumen-fistulated dairy steers were randomly assigned according to a 2 (2 factorial arrangement in a 4 (4 Latin square design to receive four dietary treatments. Factor A was roughage source: untreated rice straw (RS) and urea-treated (3%) rice straw (UTRS), and factor B was type of physical form of rice straw: long form rice straw (LFR) and chopped (4 cm) rice straw (CHR). The steers were offered the concentrate at 0.5% body weight (BW) /d and rice straw was fed ad libitum. DM intake and nutrient digestibility were increased (p<0.05) by urea treatment. Ruminal pH were decreased (p<0.05) in UTRS fed group, while ruminal ammonia nitrogen ($NH_3$-N) and blood urea nitrogen (BUN) were increased (p<0.01) by urea treatment. Total volatile fatty acid (VFA) concentrations increased (p<0.01) when steers were fed UTRS. Furthermore, VFA concentrations were not altered by treatments (p>0.05), except propionic acid (C3) was increased (p<0.05) in UTRS fed group. Nitrogen (N) balance was affected by urea treatment (p<0.05). Microbial protein synthesis (MCP) synthesis were greater by UTRS and CHR group (p<0.05). The efficiency of microbial N synthesis was greater for UTRS than for RS (p<0.05). From these results, it can be concluded that using the long form combined with urea treatment of rice straw improved feed intake, digestibility, rumen fermentation and efficiency of microbial N synthesis in crossbred dairy steers.

Discovery of D-Stereospecific Dipeptidase from Thermophilic Bacillus sp. BCS-l and Its Application for Synthesis of D-Amino Acid-Containing Peptide

  • Baek, Dae-Heoun;Kwon, Seok-Joon;Park, Jin-Seo;Lee, Seung-Goo;Mheen, Tae-Ick;Sung, Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.646-649
    • /
    • 1999
  • A thermophilic bacterium producing D-stereospecific dipeptidase was isolated from Korean soil samples. The enzyme hydrolyzed the peptide bond between D-alanyl-D-alanine (D-Ala-D-Ala). The isolated bacterial strain was rod shaped, gram-positive, motile, and formed an endospore. Morphological and physiological characteristics suggested this microorganism a thermophilic Bacillus species, and was named as Bacillus sp. BCS-l. The production of D-stereospecific dipeptidase was growth-associated and optimal at $55^{\circ}C$. The enzyme was applied for the synthesis of D-amino acid-containing peptide, N-benzyloxycarbonyl-L-aspartyl-D-alanine benzyl ester (Z-L-Asp-D-AlaOBzl), as a model reaction. A thermodynamically controlled synthesis of Z-L-Asp-D-AlaOBzl was achieved in an organic solvent.

  • PDF

Effect of Intraruminal Sucrose Infusion on Volatile Fatty Acid Production and Microbial Protein Synthesis in Sheep

  • Kim, K.H.;Lee, S.S.;Kim, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.3
    • /
    • pp.350-353
    • /
    • 2005
  • Effects of sucrose supplement on the pattern of VFA production and microbial protein synthesis in the rumen were examined in sheep consuming basal diet of grass silage (2.5 kg fresh wt/d) that was provided in 24 equal meals each day by an automatic feeder. Four mature wethers were allocated to four experimental treatments in a 4${\times}$4 Latin square design with periods lasting 14 days. The treatments were (1) the basal diet, (2) supplemented with 150 g sucrose and 7.0 g urea, (3) 300 g sucrose and 13 g urea, and (4) 450 g sucrose and 20 g urea given as a continuous intraruminal infusion for 24 h. All infusions were given in 2 litres of aqueous solution per day using a peristaltic pump. The effect of sucrose level on rumen mean pH was significantly linear (p<0.01). There were not significant differences in the concentration of ammonia-N, total VFA and the molar proportions of acetate, propionate and butyrate with the level of sucrose infusion. The molar proportions of isobutyric acid (p<0.05) and isovaleric acid (p<0.001) were significantly reduced when the infused amount of sucrose was increased. The flow of microbial N was linearly (p<0.001) increased with sucrose and urea level. High levels of readily fermentable carbohydrate in a ration reduced the efficiency of microbial protein synthesis in the rumen. It was demonstrated that of the individual fatty acids, only the molar proportion of isovalerate showed a significant negative correlation (R2=$0.3501^{**}$) with the amount of microbial N produced and a significant positive correlation (R2=$0.2735^{**}$) with the efficiency of microbial growth.

EFFECTS OF HIGH BY-PRODUCT DIETS CONTAINING RICE BRAN AND BEET PULP ON THE SITE AND EXTENT OF DIGESTION AND MICROBIAL SYNTHESIS IN STEERS

  • Zhao, Y.;Taniguchi, K.;Obitsu, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.6
    • /
    • pp.655-665
    • /
    • 1996
  • The effects of feeding rice bran and beet pulp mixtures on the site and extent of digestion and microbial synthesis in fattening steers were studied. Three Holstein steers fitted with ruminal, duodenal and ileal cannulas were fed four diets in a $4{\times}3$ Youden square design. The four diets consisted of 15% Italian ryegrass hay and 85% concentrate as a control diet which included 72% rolled barley, 20% rice bran plus 40% beet pulp, 30% rice bran plus 30% beet pulp or 40% rice bran plus 20% beet pulp. All diets provided 1.8 times digestible energy required for maintenance. The digestibility of fat in the small intestine (% of flow) showed an increase with rice bran content among the by-product diets. Digestibility of structural carbohydrate both in the rumen and the whole digestive tract decreased linearly with rice bran content. The digestibility of nonstructural carbohydrate was not affected by rice bran content, but that of nonstructural, nonstarch polysaccharides was higher in the rumen and lower in the large intestine for the by-product diets than for the control diet. A rice bran content of more than 30% in the by-product diets severely inhibits ruminal microbial synthesis and digestible energy intake in fattening steers.

Current Status of Microbial Phenylethanoid Biosynthesis

  • Kim, Song-Yi;Song, Min Kyung;Jeon, Ju Hyun;Ahn, Joong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1225-1232
    • /
    • 2018
  • Phenylethanoids, including 2-phenylethanol, tyrosol, and salidroside are a group of phenolic compounds with a C6-C2 carbon skeleton synthesized by plants. Phenylethanoids display a variety of biological activities, including antibacterial, anticancer, anti-inflammatory, neuroprotective, and anti-asthmatic activities. Recently, successful microbial synthesis of phenylethanoids through metabolic engineering and synthetic biology approaches has been reported and could allow phenylethanoid production from alternative microbial sources. Here, we review the recent achievements in the synthesis of phenylethanoids by microorganisms. The work done so far will contribute to the production of diverse phenylethanoids using various microbial systems and facilitate exploration of further diverse biological activities of phenylethanoids.

Effects of Synchronizing the Rate of Dietary Energy and Nitrogen Release on Ruminal Fermentation, Microbial Protein Synthesis, Blood Urea Nitrogen and Nutrient Digestibility in Beef Cattle

  • Chumpawadee, Songsak;Sommart, K.;Vongpralub, T.;Pattarajinda, V.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.2
    • /
    • pp.181-188
    • /
    • 2006
  • The objective of this research was to determine the effects of synchronizing the rate of dietary energy and nitrogen release on: ruminal fermentation, microbial protein synthesis, blood urea nitrogen, and nutrient digestibility in beef cattle. Four, two-and-a-half year old Brahman-Thai native crossbred steers were selected for the project. Each steer was fitted with a rumen cannula and proximal duodenal cannula. The steers were then randomly assigned in a $4{\times}4$ Latin square design to receive four dietary treatments. Prior to formulation of the dietary treatments, feed ingredients were analyzed for chemical composition and a nylon bag technique was used to analyze the treatments various ingredients for degradability. The treatments were organized in four levels of a synchrony index (0.39, 0.50, 0.62 and 0.74). The results showed that dry matter digestibility trend to be increased (p<0.06), organic matter and acid detergent fiber digestibility increased linearly (p<0.05), while crude protein and neutral detergent fiber digestibility were not significantly different (p>0.05). Higher concentration and fluctuation of ruminal ammonia and blood urea were observed in the animal that received the lower synchrony index diets. As the levels of the synchrony index increased, the concentrations of ruminal ammonia nitrogen and blood urea nitrogen, at the 4 h post feeding, decreased linearly (p<0.05). Total volatile fatty acid and bacteria populations at the 4 h post feeding increased linearly (p<0.05). Microbial protein synthesis trend to be increase (p<0.08). The results of this research indicate that synchronizing the rate of degradation of dietary energy and nitrogen release improves ruminal fermentation, microbial protein synthesis and feed utilization.