• Title/Summary/Keyword: microbial populations

Search Result 366, Processing Time 0.027 seconds

Changes of Microbial Populations on Major Leafy Vegetables Cultivated by Different Methods from Production to Washing Stages (재배방법별 주요엽채류의 생산단계에서 세척단계까지 미생물상의 변화)

  • Oh, Soh-Young;Nam, Ki-Woong;Yoon, Deok-Hoon
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.1
    • /
    • pp.38-43
    • /
    • 2018
  • A few authors have already investigated microbial contamination of leafy vegetables in distribution condition and examined the effect of temperature abuse on microbial safety or product quality. But this study analyzed proliferation of indicator microorganisms and food poisoning bacteria in real situation in Korean agroindustry and investigated washing effect of micobial contamination on leaf surface. Leafy vegetables were found to be contaminated with aerobic bacteria at $0.1{\sim}0.32{\times}10^3CFU/g$. Staphylococcus aureus and Bacillus cereus were detected in leafy vegetables at $0{\sim}0.54{\times}10^3CFU/g$. However, Salmonella spp., Coliforms, Clostridium spp. and Listeria spp. were not detected in any samples. Indicator microorganisms and food poisoning bacteria on leafy vegetables increased at room temperature when simulatively distributed condition. After clean-up, the indicator microorganisms and food poisoning bacteria of kimchi cabbage, lettuce and perilla leaf were decreased to a very low level. This study suggests that it is necessary to improve the level of hygiene management such as use of cold chain system and hygiene management of transport tools during the distribution process for fresh leafy vegetables.

Effects of Condensed Molasses Soluble on Chemical and Biological Properties of Soil, and Nitrogen Mineralization (당밀농축용액이 토양의 화학 및 생물학적 성질과 질소의 무기화에 미치는 영향)

  • Kang, Gwan-Ho;Kang, Byung-Hwa;Park, Ki-Do;Chung, Keun-Yook;Sohn, Bo-Kyoon;Ha, Ho-Sung;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.2
    • /
    • pp.124-130
    • /
    • 2004
  • This study was carried out to evaluate the effects of condensed molasses soluble (CMS) treatment on the mineralization of N, chemical properties and soil microbial population under the incubation condition with unsaturated water content during the 7 weeks at $25^{\circ}C$ in the different levels of CMS application. The results indicated that the total nitrogen content of soil was increased with increasing application rate of CMS and this trend was maintained up to 7 weeks. With CMS treatment content of $NH_4-N$ was gradually decreased. However, the content of $NO_3-N$ in the soil was gradually increased with incubation time due to the nitrification under the unsturated water condition. The CMS treatment increased the microbial populations such as bacteria, actinomycetes and fungi, which may be due to the availability of more nutrients such as amino acids, sugars and other minor elements from CMS. The pH of soil was found to be reduced by the addition of CMS, Whereas, electrical conduvtivity of soil was correspondingly increased with increasing application rate of CMS.

Microbial Communities in Rice Paddy Soils Following Cultivation of Genetically Modified Leaf Folder-resistant Rice Plants (혹명나방 저항성벼 재배 논토양의 미생물상)

  • Kwon, Jang-Sik;Noh, Hyung-Jun;Suh, Jang-Sun;Shin, Kong-Sik;Kweon, Soon-Jong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.180-187
    • /
    • 2010
  • The study was performed to investigate the property of rhizosphere microorganisms, and community structure during GMO, and Non-GMO rice cultivation. In the dilution plate technique, there were no significant differences in microbial populations of rhizosplane with genetically modified, and non-genetically modified rice cultivation, and rhizosphere were also the same results. Dominant bacterial genera were Afipia 12.5%, Spingomonas 10.0%, Ramlibacter 10.0%, Mycobacterium 7.5%, and Tetrasphaera 7.5% in rhizosphere soil of genetically modified rice plant, while Afipia 7.3%, Spingomonas 12.2%, Ramlibacter 7.3%, Mycobacterium 17.1%, Tetrasphaera 14.6% in non-genetically modified cultivated at Suwon test fields in 2006. Majorgenera isolated from root surface cultivated in Yesan fields were Arthrobacter 12.7% in rhizoplane of genetically modified plant, and Burkholderia 22.2% of non-genetically modified plant in 2007, Paucimonas 26.6% of genetically modified plant, Chryseobacterium 15.4% of non-genetically modified plant in 2008. Also the microbial communities in rhizosphere soils of genetically modified, and non-genetically modified plants were characterized using phospholipid fatty acid, and denaturing gradient gel electrophoresis. The phospholipid fatty acid profiles of soils in this condition showed different pattern, but did not show significant differences between soils cultivated with genetically or non-genetically modified rice plants.

Metal Corrosion Mechanism by Sulfate-reducing and Iron-oxidizing Bacteria in Saline System and its Optimal Inactivation (염수계 철산화균 및 황환원균에 의한 금속 부식 및 최적 제어 방안)

  • Sung, Eun-Hae;Han, Ji-Sun;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.8
    • /
    • pp.798-807
    • /
    • 2008
  • Due to economic impairment derived from metal corrosion of pumping station installed around coastal area, it was needed for related cause-effect to be investigated for understanding practical corrosion behavior and providing proper control. This research was thus carried out to determine whether the microbe can influence on metal corrosion along with its control in the laboratory. For this study, groundwater was sampled from the underground pump station(i.e. I Gas Station) where corrosion was observed. Microbial diversity on the samples were then obtained by 16S rDNA methods. From this, microbial populations showing corrosion behaviors against metals were reported as Leptothrix sp.(Iron oxidizing) and Desulfovibrio sp.(Sulfur reducing) Iron oxidizing bacteria were dominantly participating in the corrosion of iron, while sulfate reducing bacteria were more preferably producing precipitate of iron. In case of galvanized steel and stainless steel, iron oxidizing bacteria not only enhanced the corrosion, but also generated its scale of precipitate. Sulfate reducing bacteria had zinc steel corroded greater extent than that of iron oxidizing bacteria. In the inactivation test, chlorine or UV exposure could efficiently control bacterial growth. However as the inactivation intensity being increased beyond a threshold level, corrosion rate was unlikely escalated due to augmented chemical effect. It is decided that microbial corrosion could be differently taken place depending upon type of microbes or materials, although they were highly correlated. It could be efficiently retarded by given disinfection practices.

Sterilizing Effect of Electron Beam on Ginseng Powders (Electron Beam 조사에 의한 인삼분말의 살균효과)

  • Lee, Mi-Kyung;Lee, Moo-Ha;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.1362-1366
    • /
    • 1998
  • The sterilizing effect of electron beam was compared with that of gamma irradiation for commercial ginseng powders. White and red ginseng powders were contaminated by about $10^5\;CFU/g$ of total bacteria and by $10^3\;CFU$ of coliforms only in white ginseng powder. Data of microbial population for the sterilizing effect of electron beam irradiation showed that no microorganisms were detected in the samples irradiated up to 7.5 kGy for total aerobic bacteria and 2.5 kGy for molds and coliforms. Such doses were effective for controlling the microbial growth in the samples during 4 months of storage at room temperature. Decimal reduction doses $(D_{10}$ value) on the initial bacterial populations were $2.85{\sim}3.75\;kGy$ in electron beam and $2.33{\sim}2.44\;kGy$ in gamma irradiation, which were influenced by the initial microbial loads and the energy applied. Compared with gamma irradiation, electron beam showed a similar result in its sterilizing effect on ginseng powders, suggesting its potential utilization in due time.

  • PDF

Comparison of the Phylogenetic Diversity of Humus Forest Soil Bacterial Populations via Different Direct DNA Extyaction Methods (DNA 직접추출법에 따른 산림토양 부식층 내 세균군집의 계통학적 다양성 비교)

  • Son, Hee-Seong;Han, Song-Ih;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.210-216
    • /
    • 2007
  • The principal objective of this study was to analyze 16S rDNA-ARDRA of the humus forest soil via an improved manual method and an ISOIL kit on the basis of the UPGMA clustering of the 16S rDNA combined profile, 44 ARDRA clusters of 76 clones via the ISOIL kit method and 45 ARDRA clusters of 136 clones via the improved manual method. On the basis of the 16S rDNA sequences, 44 clones from the ARDRA clusters by the ISOIL kit were classified into 3 phyla : ${\alpha}-,\;{\beta}-,\;{\gamma}-,\;{\delta}-Proteobacteria$, Acidobacteria and Actinobacteria. Using the improved manual method, the specimens were classified into 6 phyla : the ${\alpha}-,\;{\beta}-,\;{\gamma}-,\;{\delta}-Proteobacteria$, Acidobacteria, Bacteroides, Verrucomicrobia, Planctomycetes and Gemmatomonadetes. As a result, the modified manual method indicated greater phylogenetic diversity than was detected by the ISOIL kit. Approximately 40 percent of the total clones were identified as ${\alpha}-Proteobacteria$ and 30 percent of the total clones were ${\gamma}-Proteobacteria$ and assigned to dominant phylogenetic groups using the ISOIL kit. Using the modified manual method, 41 percent of the total clones were identified as Acidobacteria and 28 percent of total clones were identified as ${\alpha}-proteobacteria$ and assigned to dominant phylogenetic groups.

Microbial Quality of Fresh Vegetables and Fruits in Seoul, Korea (국내 신선 채소류의 미생물 오염 특성)

  • Hong, Chae-Kyu;Seo, Young-Ho;Choi, Chae-Man;Hwang, In-Suk;Kim, Moo-Sang
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.1
    • /
    • pp.24-29
    • /
    • 2012
  • A total of 187 samples of leafy vegetables and fruits were acquired at traditional markets and department stores in Seoul, Korea. Samples were tested for microorganism distributions and for the presence of pathogenic bacteria. The aerobic mesophilic counts ranged between 2.5 and 9.4 log CFU/g, with the highest count recorded from the dropwort. Counts of psychrotrophic microorganisms were as high as those of the mesophilic microorganisms. Total coliform populations between 1.0 and 7.8 log CFU/g were found in 90.9% of the samples. Microbiological counts for fruits were very low. $Escherichia$ $coli$ was isolated in 24 (12.8%) samples. $Staphylococcus$ $aureus$ and $Clostridium$ $perfringens$ contamination were found in 15 (8.0%) and 20 (10.7%) samples. $Salmonella$ species and $Listeria$ $monocytogenes$ were detected in 2.7 and 0.5% of samples, respectively. Among the total 187 samples, 8 samples were contaminated by more than two pathogens. $E.$ $coli$ O157:H7 was not detected in any of the samples. The microbial contamination levels determined in the present study may be used as the primary data to execute microbial risk assessment of fresh vegetables and fruits.

Effects of combined acetic acid and UV-C irradiation treatment on the microbial growth and the quality of sedum during its storage (Acetic acid와 UV-C 병합처리가 돌나물의 저장 중 미생물 성장과 품질에 미치는 영향)

  • Seong, Ki Hyun;Kang, Ji Hoon;Song, Kyung Bin
    • Food Science and Preservation
    • /
    • v.21 no.4
    • /
    • pp.581-586
    • /
    • 2014
  • With the current consumer trend toward health and wellbeing, the demand for consumption of fresh cut vegetables has been increasing. As a popular vegetable with functional components, sedum (Sedum sarmentosum) is widely used in Korea as a side dish that needs no cooking. In this study, to provide a hurdle technology for postharvest sedum, the effects of combined treatment of 1% acetic acid for washing and $10kJ/m^2$ UV-C irradiation on the microbial growth and quality of sedum were examined. After the treatment, the sedum samples were stored at $10^{\circ}C$ for six days, and the results of their microbial analysis as well as their color, vitamin C content, and antioxidant activity were analyzed. The combined treatment with acetic acid and UV-C irradiation reduced the initial populations of the total aerobic bacteria and the yeast and molds in the sedum by 3.28 and 4.22 log CFU/g, respectively, compared to those in the control. The Hunter L, a, and b values of the sedum did not significantly differ across the treatments. In addition, the vitamin C content and the antioxidant activity decreased significantly during the storage, regardless of the treatment. These results suggest that the combined treatment with 1% acetic acid and $10kJ/m^2$ UV-C irradiation can be useful as a hurdle technology for retaining the microbiological safety and quality of sedum during its storage.

Effect of commercial sanitizers on microbial quality of fresh-cut iceberg lettuce during storage (세척용 시판 살균제 종류에 따른 신선편의 양상추의 저장 중 미생물 변화)

  • Hwang, Tae-Young
    • Food Science and Preservation
    • /
    • v.24 no.6
    • /
    • pp.827-833
    • /
    • 2017
  • This study was investigated the effects of various commercial sanitizers on microbial characteristics in fresh-cut iceberg lettuce during storage. For screening sanitizer, lettuce was cut and dipped in chlorine water ($0.2ml{\cdot}L^{-1}$), solution of organic acids such as ascorbic acid, citric acid, acetic acid, mixture of ascorbic acid and acetic acid (1-6%), and solutions of commercial sanitizers such as Formula 4$^{TM}$ (1,3,4%), Fresh produce wash$^{TM}$ (1,3,4%), Cleancol$^{TM}$ (1%), Chitochol$^{TM}$ (1%) and Natural Ca$^{TM}$ (0.1%) for 3 min, respectively. Washing lettuce with selected sanitizers resulted in reduction of aerobic bacteria of more than 2 log CFU/g. Initial pH of lettuce was related with the pH of sanitizers. pH ranged from 4.7 to 6.1 in Formula 4 (4%, pH 1.7) and Natural Ca (0.1%, pH 12.0), respectively. Chlorine water showed consistent and significant inhibition effect in all of microorganisms except total coliform. Over 3% of Formula 4 and Fresh produce wash were found to have high bactericidal activity among sanitizers. The sanitizers of chlorine water, Fresh produce wash, Chitochol and Natural Ca were effective in reducing yeast and mould populations. As coliform and E. coli, Formula 4 (4%) showed the highest bactericidal activity. The bactericidal effect of commercial sanitizers during storage varied with the kinds and concentrations of tested sanitizers. Although inhibition effect was not showed during storage, these results suggest that commercial sanitizers could be an alternative to chlorine for washing fresh-cut produce.

Antimicrobial Effects of Chlorine Dioxide Gas on Pathogenic Escherichia coli and Salmonella spp. Colonizing on Strawberries for Export (수출 딸기 중 이산화염소 가스 처리를 통한 병원성 Escherichia coli와 Salmonella spp. 저감화 효과)

  • Lee, Hyo-Sub;Shim, Won-Bo;An, Hyun Mi;Ha, Ji-Hyoung;Lee, Eun-Seon;Kim, Won-Il;Kim, Hwang-Yong;Kim, Se-Ri
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.6
    • /
    • pp.451-457
    • /
    • 2016
  • The purpose of this study was to determine the antimicrobial effects of $ClO_2$ gas on pathogenic E. coli and Salmonella spp. colonizing on the fruit surface of strawberries for export. Factorial design was employed to treat strawberries inoculated with pathogenic E. coli or Salmonella spp. with a combination of $ClO_2$ gas concentrations (10, 20, 30, 40, and 50 ppmv), RH (50, 70, and 90%), and treatment time (0, 5, 10, 20, and 30 min). Interaction between the factors was observed to note that the reduced levels of microbial population were the highest when RH is set at 90% with gas concentration- and treatment time-dependent manner. With RH and gas concentration fixed at 90% and 50 ppmv, the populations of E. coli and Salmonella spp. decreased by 2.07 and 2.28 log CFU/g when treated for 20 min whereas population reduction by 0.5 and 0.7 log CFU/g were observed when treated for 5 min, respectively. The results help establish most effective conditions for $ClO_2$ gas treatment to enhance microbial safety of strawberries for export.