• 제목/요약/키워드: microbial engineering

검색결과 1,533건 처리시간 0.028초

Purification of Progelatinase A (Matrix Metalloproteinase 2) and a Tissue Inhibitor of Metalloproteinase-2(TIMP-2) from T98G Human Glioblastoma Cells

  • Lee, Ho-Jae;Chung, Myung-Chul;Lee, Choong-Hwan;Chun, Hyo-Kon;Kho, Yung-Hee
    • BMB Reports
    • /
    • 제28권1호
    • /
    • pp.33-39
    • /
    • 1995
  • The Gelatinases (typeIV collagenases) are metalloproteinases that may play an important role in tumor invasion and metastasis. Progelatinase A was purified from a conditioned medium of T98G human glioblastoma cells. TIMP-2 complexed progelatinase A and free progelatinase A were separated by heparin affinity HPLC. The final product was homogeneous on SDS-PAGE, with a molecular weight of 64,000 daltons without reduction. TIMP-2 and free progelatinase A were separated from TIMP-2 complexed progelatinase A by reverse-phase HPLC in the presence of trifluoroacetic acid. TIMP-2 complexed progelatinase A was resistant to activation by p-aminophenyl mercuric acetate (APMA), and showed less than 20% of the activity of the TIMP-2 free active enzyme. TIMP-2 free progelatinase A was easily activated to the mature form with a molecular weight of 57,000 daltons by APMA and showed high activity compared to the TIMP-2 complexed enzyme.

  • PDF

MBR공정에서 내부 반송비에 따른 생물대사성분의 거동 (Behavior of Soluble Microbial Products by the Internal Recycle Rate in MBR Process)

  • 이원배;차기철;정태영;김동진;유익근
    • 한국물환경학회지
    • /
    • 제21권6호
    • /
    • pp.602-608
    • /
    • 2005
  • A laboratory-scale experiment was conducted to investigate control of soluble microbial products (SMP) by the internal recycle rate in the submerged membrane separation activated sludge process. The internal recycle rate of the reactor RUN 1 and RUN 2 were 100 % and 200 %, respectively. SMP concentration was rapidly accumulated in the reactor (RUN 1). The variation of accumulated SMP concentration was related to the denitrification rate at the beginning experiment however SMP concentration decreased without correlatively to the denitrification rate during long operation time. The microbial kinetic model was rapidly presented in the both microbial growth and extinction in the reactor (RUN 1). In the SMP kinetic model, Internal recycle rate is the lower, value of UAP and BAP which SMP matter were presented low. The study about development of kinetic model is relatively well adjusted to the experiment exception SMP. In the future, SMP formation equation must be thought that continually research is necessary.

폐타이어 재활용을 위한 미생물 처리 (Studies on Microbial Treatment for Recycling of Waste Tire)

  • 박진원;노현석;김진국;조영일
    • Elastomers and Composites
    • /
    • 제32권5호
    • /
    • pp.325-329
    • /
    • 1997
  • Microbial treatment of the powdered waste tire was studied to recycle the waste tires. Chemoautotrophic acidophilic, iron-oxidizing bacterium was employed to unvulcanize the powdered tires. Biotreated rubber powder was compared to a untreated and a chemically treated powder. The results showed sulfur content of rubber powder(1.33%) were decreased to 1.22% by chemical treatment and 1.12% by microbial treatment for 20 days, 0.88%, for 30 days. One of the problems of the powdered utilization of the waste tires is that rubber powder leads to decrease mechanical properties when it is compounded with other virgin polymers. When tee biotreated powder was compounded with natural rubber, the mechanical properties were less decreased when untreated or chemically treated powder. Therefore, the microbial treatment can be one of useful methods to recycle the waste tire.

  • PDF

습식 마늘박피 시스템 개발 (III) - 미생물 제어 시스템의 도입 - (Development of a Garlic Peeling System Using High-Pressure Water Jets (III) - Introduction of a microbial control system -)

  • 김정호;배영환
    • Journal of Biosystems Engineering
    • /
    • 제30권1호
    • /
    • pp.17-24
    • /
    • 2005
  • An efficient microbial control system was introduced into a garlic peeling system using pressurized water in order to improve the quality and the shelf-life of peeled garlic. High microbial density of the spoiled peeled garlic and the water used for peeling and washing indicated that an efficient microbial control system is necessary far the peeling system. Though Pseudomonas spp. and Penicillium spp. were closely related to the spoilage of peeled garlic, the spoilage of peeled garlic was thought to be caused mainly by nonspecific increase in microbial density. The shelf-life of the garlic peeled by pressurized water was longer than that of the garlic peeled by pressurized air, and the degree of damage had great effect on the shelf-life of peeled garlic. Ozonated water was effective in decreasing the microbial contamination and in increasing the shelf-life of peeled garlic. Based on the findings of the study, following improvements were made to the garlic peeling system using pressurized water; 1) the water circulation system was modified in order to completely separate the water for washing from the water for garlic peeling, 2) filtration and cooling equipments were introduced into the circulation system of the water for peeling, and 3) an ozone generator which could continuously supply ozonated water (dissolved ozone concentration of 0.4 ppm) was attached to the circulation system of the water for washing.

Production of Rapamycin in Streptomyces hygroscopicus from Glycerol-Based Media Optimized by Systemic Methodology

  • Kim, Yong Hyun;Park, Bu Soo;Bhatia, Shashi Kant;Seo, Hyung-Min;Jeon, Jong-Min;Kim, Hyun-Joong;Yi, Da-Hye;Lee, Ju-Hee;Choi, Kwon-Young;Park, Hyung-Yeon;Kim, Yun-Gon;Yang, Yung-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권10호
    • /
    • pp.1319-1326
    • /
    • 2014
  • Rapamycin, produced by the soil bacterium Streptomyces hygroscopicus, has the ability to suppress the immune system and is used as an antifungal, anti-inflammatory, antitumor, and immunosuppressive agent. In an attempt to increase the productivity of rapamycin, mutagenesis of wild-type Streptomyces hygroscopicus was performed using ultraviolet radiation, and the medium composition was optimized using glycerol (which is one of the cheapest starting substrates) by applying Plackett-Burman design and response surface methodology. Plackett-Burman design was used to analyze 14 medium constituents: M100 (maltodextrin), glycerol, soybean meal, soytone, yeast extract, $(NH_4)_2SO_4$, $\small{L}$-lysine, $KH_2PO_4$, $K_2HPO_4$, NaCl, $FeSO_4{cdot}7H_2O$, $CaCO_3$, 2-(N-morpholino) ethanesulfonic acid, and the initial pH level. Glycerol, soytone, yeast extract, and $CaCO_3$ were analyzed to evaluate their effect on rapamycin production. The individual and interaction effects of the four selected variables were determined by Box-Behnken design, suggesting $CaCO_3$, soytone, and yeast extract have negative effects, but glycerol was a positive factor to determine rapamycin productivity. Medium optimization using statistical design resulted in a 45% ($220.7{\pm}5.7mg/l$) increase in rapamycin production for the Streptomyces hygroscopicus mutant, compared with the unoptimized production medium ($151.9{\pm}22.6mg/l$), and nearly 588% compared with wild-type Streptomyces hygroscopicus ($37.5{\pm}2.8mg/l$). The change in pH showed that $CaCO_3$ is a critical and negative factor for rapamycin production.

Nonylphenol 분해 미생물 컨소시엄 균주 개발 (Isolation of a Nonylphenol-degrading Microbial Consortium)

  • 송원;임근식;유대웅;박미은;정은탁;김동명;정용현;김영목
    • 한국수산과학회지
    • /
    • 제44권4호
    • /
    • pp.325-331
    • /
    • 2011
  • Nonylphenol (NP), which is well known as an endocrine disrupter, has been detected widely in untreated sewage or waste water streams. Given the necessity of discovering an eco-friendly method of degrading this toxic organic compound, this study was conducted to isolate NP-degrading microorganisms from the aqueous environment. NP-degrading microbes were isolated through NP-containing enrichment culture. Finally, a microbial consortium, SW-3, capable of degrading NP with high efficiency, was selected from the mixture sample. The microbial consortium SW-3 was able to degrade over 99% of 100 ppm NP in the culture medium for 40 days at $25^{\circ}C$. The microbial consortium SW-3 seemed to utilize NP as a carbon source, since NP was the sole carbon source in the culture medium. In order to isolate the NP-degrading bacterium, we further conducted single colony isolation using the microbial consortium SW-3. Four strains isolated from SW-3 exhibited lower NP-degradation efficiency than that of SW-3, suggesting that NP was degraded by the co-metabolism of the microbial consortium. We suggest that the microbial consortium obtained in this study would be useful in developing an eco-friendly bioremediation technology for NP degradation.

Current Status of Microbial Phenylethanoid Biosynthesis

  • Kim, Song-Yi;Song, Min Kyung;Jeon, Ju Hyun;Ahn, Joong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권8호
    • /
    • pp.1225-1232
    • /
    • 2018
  • Phenylethanoids, including 2-phenylethanol, tyrosol, and salidroside are a group of phenolic compounds with a C6-C2 carbon skeleton synthesized by plants. Phenylethanoids display a variety of biological activities, including antibacterial, anticancer, anti-inflammatory, neuroprotective, and anti-asthmatic activities. Recently, successful microbial synthesis of phenylethanoids through metabolic engineering and synthetic biology approaches has been reported and could allow phenylethanoid production from alternative microbial sources. Here, we review the recent achievements in the synthesis of phenylethanoids by microorganisms. The work done so far will contribute to the production of diverse phenylethanoids using various microbial systems and facilitate exploration of further diverse biological activities of phenylethanoids.

Spore Display Using Bacillus thuringiensis Exosporium Protein InhA

  • Park, Tae-Jung;Choi, Soo-Keun;Jung, Heung-Chae;Lee, Sang-Yup;Pan, Jae-Gu
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권5호
    • /
    • pp.495-501
    • /
    • 2009
  • A new spore display method is presented that enables recombinant proteins to be displayed on the surface of Bacillus spores via fusion with InhA, an exosporium component of Bacillus thuringiensis. The green fluorescent protein and $\beta$-galactosidase as model proteins were fused to the C-terminal region of InhA, respectively. The surface expression of the proteins on the spores was confirmed by flow cytometry, confocal laser scanning microscopy, measurement of the enzyme activity, and an immunogold electron microscopy analysis. InhA-mediated anchoring of foreign proteins in the exosporium of Bacillus spores can provide a new method of microbial display, thereby broadening the potential for novel applications of microbial display.