• Title/Summary/Keyword: microarray data

Search Result 476, Processing Time 0.022 seconds

Statistical Method of Ranking Candidate Genes for the Biomarker

  • Kim, Byung-Soo;Kim, In-Young;Lee, Sun-Ho;Rha, Sun-Young
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.1
    • /
    • pp.169-182
    • /
    • 2007
  • Receive operating characteristic (ROC) approach can be employed to rank candidate genes from a microarray experiment, in particular, for the biomarker development with the purpose of population screening of a cancer. In the cancer microarray experiment based on n patients the researcher often wants to compare the tumor tissue with the normal tissue within the same individual using a common reference RNA. Ideally, this experiment produces n pairs of microarray data. However, it is often the case that there are missing values either in the normal or tumor tissue data. Practically, we have $n_1$ pairs of complete observations, $n_2$ "normal only" and $n_3$ "tumor only" data for the microarray. We refer to this data set as a mixed data set. We develop a ROC approach on the mixed data set to rank candidate genes for the biomarker development for the colorectal cancer screening. It turns out that the correlation between two ranks in terms of ROC and t statistics based on the top 50 genes of ROC rank is less than 0.6. This result indicates that employing a right approach of ranking candidate genes for the biomarker development is important for the allocation of resources.

Finding Informative Genes From Microarray Gene Expression Data Using FIGER-test

  • Choi, Kyoung-Oak;Chung, Hwan-Mook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.707-711
    • /
    • 2007
  • Microarray gene expression data is believed to show the functions of living organism through the gene expression values. We have studied a method to get the informative genes from the microarray gene expression data. There are several ways for this. In recent researches to get more sophisticated and detailed results, it has used the intelligence information theory like fuzzy theory. Some methods are to add fudge factors to the significance test for more refined results. In this paper, we suggest a method to get informative genes from microarray gene expression data. We combined the difference of means between two groups and the fuzzy membership degree which reflects the variance of the gene expression data. We have called our significance test the Fuzzy Information method for Gene Expression data(FIGER). The FIGER calculates FIGER variation ratio and FIGER membership degree to show how strongly each object belongs to the each group and then it results in the significance degree of each gene. The FIGER is focused on the variation and distribution of the data set to adjust the significance level. Out simulation shows that the FIGER-test is an effective and useful significance test.

Development of a Reproducibility Index for cDNA Microarray Experiments

  • Kim, Byung-Soo;Rha, Sun-Young
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.05a
    • /
    • pp.79-83
    • /
    • 2002
  • Since its introduction in 1995 by Schena et al. cDNA microarrays have been established as a potential tool for high-throughput analysis which allows the global monitoring of expression levels for thousands of genes simultaneously. One of the characteristics of the cDNA microarray data is that there is inherent noise even after the removal of systematic effects in the experiment. Therefore, replication is crucial to the microarray experiment. The assessment of reproducibility among replicates, however, has drawn little attention. Reproducibility may be assessed with several different endpoints along the process of data reduction of the microarray data. We define the reproducibility to be the degree with which replicate arrays duplicate each other. The aim of this note is to develop a novel measure of reproducibility among replicates in the cDNA microarray experiment based on the unprocessed data. Suppose we have p genes and n replicates in a microarray experiment. We first develop a measure of reproducibility between two replicates and generalize this concept for a measure of reproducibility of one replicate against the remaining n-1 replicates. We used the rank of the outcome variable and employed the concept of a measure of tracking in the blood pressure literature. We applied the reproducibility measure to two sets of microarray experiments in which one experiment was performed in a more homogeneous environment, resulting in validation of this novel method. The operational interpretation of this measure is clearer than Pearson's correlation coefficient which might be used as a crude measure of reproducibility of two replicates.

  • PDF

Building a Classifier for Integrated Microarray Datasets through Two-Stage Approach (2 단계 접근법을 통한 통합 마이크로어레이 데이타의 분류기 생성)

  • Yoon, Young-Mi;Lee, Jong-Chan;Park, Sang-Hyun
    • Journal of KIISE:Databases
    • /
    • v.34 no.1
    • /
    • pp.46-58
    • /
    • 2007
  • Since microarray data acquire tens of thousands of gene expression values simultaneously, they could be very useful in identifying the phenotypes of diseases. However, the results of analyzing several microarray datasets which were independently carried out with the same biological objectives, could turn out to be different. One of the main reasons is attributable to the limited number of samples involved in one microarry experiment. In order to increase the classification accuracy, it is desirable to augment the sample size by integrating and maximizing the use of independently-conducted microarray datasets. In this paper, we propose a novel two-stage approach which firstly integrates individual microarray datasets to overcome the problem caused by limited number of samples, and identifies informative genes, secondly builds a classifier using only the informative genes. The classifier from large samples by integrating independent microarray datasets achieves high accuracy up to 24.19% increase as against other comparison methods, sensitivity, and specificity on independent test sample dataset.

A Study of HME Model in Time-Course Microarray Data

  • Myoung, Sung-Min;Kim, Dong-Geon;Jo, Jin-Nam
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.3
    • /
    • pp.415-422
    • /
    • 2012
  • For statistical microarray data analysis, clustering analysis is a useful exploratory technique and offers the promise of simultaneously studying the variation of many genes. However, most of the proposed clustering methods are not rigorously solved for a time-course microarray data cluster and for a fitting time covariate; therefore, a statistical method is needed to form a cluster and represent a linear trend of each cluster for each gene. In this research, we developed a modified hierarchical mixture of an experts model to suggest clustering data and characterize each cluster using a linear mixed effect model. The feasibility of the proposed method is illustrated by an application to the human fibroblast data suggested by Iyer et al. (1999).

Effect of Normalization on Detection of Differentially-Expressed Genes with Moderate Effects

  • Cho, Seo-Ae;Lee, Eun-Jee;Kim, Young-Chul;Park, Tae-Sung
    • Genomics & Informatics
    • /
    • v.5 no.3
    • /
    • pp.118-123
    • /
    • 2007
  • The current existing literature offers little guidance on how to decide which method to use to analyze one-channel microarray measurements when dealing with large, grouped samples. Most previous methods have focused on two-channel data;therefore they can not be easily applied to one-channel microarray data. Thus, a more reliable method is required to determine an appropriate combination of individual basic processing steps for a given dataset in order to improve the validity of one-channel expression data analysis. We address key issues in evaluating the effectiveness of basic statistical processing steps of microarray data that can affect the final outcome of gene expression analysis without focusingon the intrinsic data underlying biological interpretation.

Poor Correlation Between the New Statistical and the Old Empirical Algorithms for DNA Microarray Analysis

  • Kim, Ju Han;Kuo, Winston P.;Kong, Sek-Won;Ohno-Machado, Lucila;Kohane, Isaac S.
    • Genomics & Informatics
    • /
    • v.1 no.2
    • /
    • pp.87-93
    • /
    • 2003
  • DNA microarray is currently the most prominent tool for investigating large-scale gene expression data. Different algorithms for measuring gene expression levels from scanned images of microarray experiments may significantly impact the following steps of functional genomic analyses. $Affymetrix^{(R)}$ recently introduced high-density microarrays and new statistical algorithms in Microarray Suit (MAS) version 5.0$^{(R)}$. Very high correlations (0.92 - 0.97) between the new algorithms and the old algorithms (MAS 4.0) across several species and conditions were reported. We found that the column-wise array correlations had a tendency to be much higher than the row-wise gene correlations, which may be much more meaningful in the following higher-order data analyses including clustering and pattern analyses. In this paper, not only the detailed comparison of the two sets of algorithms is illustrated, but the impact of the introducing new algorithms on the further clustering analysis of microarray data and of possible pitfalls in mixing the old and the new algorithms were also described.

Local Linear Logistic Classification of Microarray Data Using Orthogonal Components (직교요인을 이용한 국소선형 로지스틱 마이크로어레이 자료의 판별분석)

  • Baek, Jang-Sun;Son, Young-Sook
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.3
    • /
    • pp.587-598
    • /
    • 2006
  • The number of variables exceeds the number of samples in microarray data. We propose a nonparametric local linear logistic classification procedure using orthogonal components for classifying high-dimensional microarray data. The proposed method is based on the local likelihood and can be applied to multi-class classification. We applied the local linear logistic classification method using PCA, PLS, and factor analysis components as new features to Leukemia data and colon data, and compare the performance of the proposed method with the conventional statistical classification procedures. The proposed method outperforms the conventional ones for each component, and PLS has shown best performance when it is embedded in the proposed method among the three orthogonal components.

Feature Selection via Embedded Learning Based on Tangent Space Alignment for Microarray Data

  • Ye, Xiucai;Sakurai, Tetsuya
    • Journal of Computing Science and Engineering
    • /
    • v.11 no.4
    • /
    • pp.121-129
    • /
    • 2017
  • Feature selection has been widely established as an efficient technique for microarray data analysis. Feature selection aims to search for the most important feature/gene subset of a given dataset according to its relevance to the current target. Unsupervised feature selection is considered to be challenging due to the lack of label information. In this paper, we propose a novel method for unsupervised feature selection, which incorporates embedded learning and $l_{2,1}-norm$ sparse regression into a framework to select genes in microarray data analysis. Local tangent space alignment is applied during embedded learning to preserve the local data structure. The $l_{2,1}-norm$ sparse regression acts as a constraint to aid in learning the gene weights correlatively, by which the proposed method optimizes for selecting the informative genes which better capture the interesting natural classes of samples. We provide an effective algorithm to solve the optimization problem in our method. Finally, to validate the efficacy of the proposed method, we evaluate the proposed method on real microarray gene expression datasets. The experimental results demonstrate that the proposed method obtains quite promising performance.

A Review of Cluster Analysis for Time Course Microarray Data (시간 경로 마이크로어레이 자료의 군집 분석에 관한 고찰)

  • Sohn In-Suk;Lee Jae-Won;Kim Seo-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.1
    • /
    • pp.13-32
    • /
    • 2006
  • Biologists are attempting to group genes based on the temporal pattern of gene expression levels. So far, a number of methods have been proposed for clustering microarray data. However, the results of clustering depends on the genes selection, therefore the gene selection with significant expression difference is also very important to cluster for microarray data. Thus, this paper present the results of broad comparative studies to time course microarray data by considering methods of gene selection, clustering and cluster validation.