• Title/Summary/Keyword: microalgae treatment

Search Result 102, Processing Time 0.029 seconds

Antibiotics and Their Optimum Concentration for Axenic Culture of Marine Microalgae (해양미세조류의 무균배양을 위한 항생제의 종류 및 최적 농도)

  • Youn, Joo-Yeon;Hur, Sung-Bum
    • ALGAE
    • /
    • v.22 no.3
    • /
    • pp.229-234
    • /
    • 2007
  • This study was to determine the extent of bacteria contamination and resistance to various antibiotics used commonly in microalgal culture. Seven different dose levels of chloramphenicol, dihydrostreptomycin sulphate, neomycin, penicillin G, streptomycin sulphate, penicillin G + streptomycin sulphate, and penicillin G + streptomycin sulphate + chloramphenicol were added to each culture of microalgae. The lethal effects on microalgae and bacteria were the highest in chloramphenicol and the lowest in penicillin G. The axenic culture of bacillariophyceae and dinophyceae was more difficult than that of chlorophyceae and haptophyceae because of their complicate external morphology. The efficient antibiotics and their concentrations for axenic cultures varied with microalgal species. The optimum quantity for antibiotic treatments were 2,000 ppm of dihydrostreptomycin for Chlorella ellipsoidea, neomycin 500 ppm of Isochrysis galbana and Heterosigma ahashiwo, hloramphenicol 500 ppm of Cyclotella didymus, and dihydrostreptomycin sulphate and neomycin 6,000 ppm of Thalassiosira allenii.

Enhanced of Bio-Hydrogen Production from Microalgae by Thermal Pre-Treatment (열처리를 통한 미세조류로부터 바이오수소 생산 향상)

  • Lee, Chaeyoung;Choi, Jaemin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.4
    • /
    • pp.275-281
    • /
    • 2013
  • This study was conducted to increase the amount of bio-hydrogen production from microalgae(Chlorella vulgaris) in batch reactors by thermal pre-treatment. The optimization of thermal pre-treatment was conducted using statistic experimental design of response surface methodology. Two experimental parameters of temperature and reaction time were considered. The optimization condition was founded at the coded variables of <0.52, -0.07> corresponding to the experimental of heating temperature of $95.6^{\circ}C$ and reaction time of 57.9 min, respectively. Under the optimal condition, the maximum hydrogen production was predicted to 25.3mL $H_2/g$ dry cell weight (dcw), which was 9.1 times higher value of control(2.8mL $H_2/g$ dcw).

Removal of Microalgae Using Inorganic Coagulants in Coagulation and Sedimentation Processes for Water Treatment (응집.침전공정에서 무기고분자응집제를 이용한 미세조류의 제거)

  • Cheong, Cheong-Jo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.1
    • /
    • pp.85-89
    • /
    • 2008
  • The purpose of this study is to understand the removal possibility of microalgae using inorganic coagulants in coagulation and sedimentation process for water treatment. Removal of microalgae was studied according to coagulant type(Alum and PAC), coagulation factors(alkalinity, coagulant dosage, and setting time), and size fraction of microalgae. The contribution of applied coagulants for removal of microalgae was also examined. The removal rate of the microalgae by change of alkalinity was most high in 25 mg/L of alkalinity(Alum) as 87.2% and 30 mg/L of that(PAC) as 90.1%. Optimal coagulant dosage to remove the microalgae was 40 mg/L(removal effi.; 88.1%), and PAC was 50 mg/L(removal effi.; 90.1%). Alum was better than the PAC to remove the microlgae. In the water treatment processes such as rapid slow mixing and sedimentation the removal efficiency of microalgae with coagulants was 2 times higher than that of without. In optimal condition, the removal efficiencies of microalgae were nanoplankton > microplankton > picoplankton. Especially, the removal efficiency of the picoplankton was very low as below 30%.

Effects of phosphorus concentration and nitrogen sources on photoautotrophic microalgae Scenedesmus dimorphus applied wastewater treatment (인 농도 및 질소원이 광합성 미세조류인 Scenedesmus dimorphus를 이용한 하수고도처리에 미치는 영향)

  • Kim, Tae-Hyeong;Cho, Yong-Beom;Park, Jeong-Eun;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.3
    • /
    • pp.325-329
    • /
    • 2013
  • A result of estimating the effects of initial phosphorus concentration and nitrogen sources on removal of nitrogen and phosphorus in wastewater treatment using Scenedesmus dimorphus shows that there was no difference in microalgae growth amount and nitrogen removal amount by phosphorus concentration(5 ~ 60 mg/L). On the other hand, as initial phosphorus concentration increased, phosphorus removal amount was increased by luxury uptake of microalgae. Scenedesmus dimorphus preferred to ammonia when ammonia(40 mg/L) and nitrate(40 mg/L) are simultaneously presented and nitrogen removal rate of ammonia was high at approximately 20 mg/L/day.

Effects of electric current on electrocoagulation for optimal harvesting of microalgae for advanced wastewater treatment (하수고도처리용 미세조류의 최적회수를 위한 전기응집기술 적용에 있어 전류의 영향)

  • Lee, SeokMin;Joo, Sung Jin;Choi, Kyoung Jin;Zhang, Shan;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.4
    • /
    • pp.473-478
    • /
    • 2014
  • Microalgae is known as one alternative energy source of the fossil fuel with the small size of $5{\sim}50{\mu}m$ and negative charge. Currently, the cost of microalgae recovery process take a large part, about 20 - 30% of total operating cost. Thus, the microalgae recovery method with low cost is needed. In this study, the optimum current for Scenedesmus dimorphus recovery process using electrocoagulation techniques was investigated. Under the electrical current, Al metal in anode electrode is oxidized to oxidation state of $Al^{3+}$. In the cathode electrode, the water electrolysis generated $OH^-$ which combine with $Al^{3+}$ to produce $Al(OH)_3$. This hydroxide acts as a coagulant to harvest microalgae. Before applying in 1.5 L capacity electrocoagulation reactor, Scenedesmus dimorphus was cultured in 20 L cylindrical reactor to concentration of 1 OD. The microalgae recovery efficiency of electrocoagulation reactor was evaluated under different current conditions from 0.1 ~ 0.3 A. The results show that, the fastest and highest recovery efficiency were achieved at the current or 0.3 A, which the highest energy efficiency was achieved at 0.15 A.

Effects of volatile fatty acids on microalgae growth and N, P consumption in the advanced treatment process of digested food waste leachate by mixotrophic microalgae (Mixotrophic microalgae에 의한 음폐수 소화액 고도처리에 있어 유기산이 microalgae의 성장 및 질소, 인 제거에 미치는 영향)

  • Zhang, Shan;Hwan, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.4
    • /
    • pp.357-362
    • /
    • 2017
  • Acetate, propionate, butyrate are the major soluble volatile fatty acids metabolites of fermented food waste leachates. This work investigate the effects of volatile fatty acid on the growth rate and $NH_4-N$, $PO_4-P$ removal efficiency of mixotrophic microalgae Chlorella vulgaris to treat digested food waste leachates. The results showed that acetate, propionate and butyrate were efficiently utilized by Chlorella vulgaris and microalgae growth was higher than control condition. Similar trends were observed upon $NH_4-N$ and $PO_4-P$ consumption. Volatile fatty acids promoted Chlorella vulgaris growth, and nutrient removal efficiencies were highest when acetate was used, and butyrate and propionate showed second and third. From this work it could be said that using mixotrophic microalgae, in this work Chlorella vulgaris, fermented food waste leachates can be treated with high efficiencies.

Municipal Wastewater Treatment and Microbial Diversity Analysis of Microalgal Mini Raceway Open Pond (미세조류 옥외 배양시스템을 이용한 도시하수 정화 및 미생물 군집다양성 분석)

  • Kang, Zion;Kim, Byung-Hyuk;Shin, Sang-Yoon;Oh, Hee-Mock;Kim, Hee-Sik
    • Korean Journal of Microbiology
    • /
    • v.48 no.3
    • /
    • pp.192-199
    • /
    • 2012
  • Microalgal biotechnology has gained prominence because of the ability of microalgae to produce value-added products including biodiesel through photosynthesis. However, carbon and nutrient source is often a limiting factor for microalgal growth leading to higher input costs for sufficient biomass production. Use of municipal wastewater as a low cost alternative to grow microalgae as well as to treat the same has been demonstrated in this study using mini raceway open ponds. Municipal wastewater was collected after primary treatment and microalgae indigenous in the wastewater were encouraged to grow in open raceways under optimum conditions. The mean removal efficiencies of TN, TP, COD-$_{Mn}$, $NH_3$-N after 6 days of retention time was 80.18%, 63.56%, 76.34%, and 96.74% respectively. The 18S rRNA gene analysis of the community revealed the presence of Chlorella vulgaris and Scenedesmus obliquus as the dominant microalgae. In addition, 16S rRNA gene analysis demonstrated that Rhodobacter, Luteimonas, Porphyrobacter, Agrobacterium, and Thauera were present along with the microalgae. From these results, it is concluded that microalgae could be used to effectively treat municipal wastewater without aerobic treatment, which incurs additional energy costs. In addition, municipal wastewater shall also serve as an excellent carbon and nitrogen source for microalgal growth. Moreover, the microalgal biomass shall be utilized for commercial purposes.

Flocculation of microalgae using extracellular polymeric substances (EPS) extracted from activated sludge

  • Dong, Dandan;Seo, Dongmin;Seo, Sungkyu;Lee, Jae Woo
    • Membrane and Water Treatment
    • /
    • v.9 no.3
    • /
    • pp.147-153
    • /
    • 2018
  • This study investigates the role of microbial extracellular polymeric substances (EPSs) as bioflocculants to harvest microalgae (water-microalgae separation). The EPS extracted from waste activated sludge (WAS) by heat extraction were fractionated into soluble EPS (S-EPS), loosely-bound EPS (LB-EPS) and tightly-bound EPS (TB-EPS) forms. All the EPSs facilitated the flocculation of microalgal cells from stable growth medium. Of those EPSs, the TB-EPS showed the highest flocculating activity (FA) resulting in the substantial decrease in the amount of EPS added in terms of total organic carbon (TOC) during flocculation. The FA of microalgae was improved with the increase in TB-EPS dose, however, excessive dose of TB-EPS adversely affected it due to destabilization. Both LB- and TB-EPS could be utilized for flocculating microalgae as a sustainable option to the existing chemical-based flocculants. In addition to the conventional assessments, the effectiveness of the two bioflocculants for floc forming was also confirmed using a novel assessment of lens-free shadow imaging technique (LSIT), which was firstly applied for the rapid and quantitative assessment of microalgal flocculation.

A Research of Trends in Development of Bio-Diesel Aviation Fuel Technology using Microalgae (미세조류 이용 바이오디젤 항공유 기술개발 동향 연구)

  • Han-Young Yoon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.32 no.2
    • /
    • pp.151-158
    • /
    • 2024
  • Microalgae are aquatic microorganisms capable of photosynthetic growth using water, carbon dioxide and sunlight, and can replace petroleum for transportation. It is receiving great attention as a potential next-generation biological resource. The microalgae biodiesel production process is largely based on the development of highly efficient strains and mass production. It consists of cultivation, harvesting, oil extraction, fuel conversion and by-product utilization. Currently, microalgae diesel is 3-5 times more expensive than petroleum diesel. However, with the optimization of each element technology and the development of integrated systems, not only biofuels, but also industrial materials, wastewater treatment, and greenhouse gases As application expands to various fields such as abatement, the timing of commercialization may be brought forward. Oil prices have recently fallen due to the influence of sail gas. Although there has been a significant drop, global warming is an urgent challenge for current and future generations. In particular, Korea, which does not have oil resources, We must always prepare for political environmental changes, high oil prices, and energy crises. In this paper, the need for eco-friendly biofuel for carbon dioxide conversion. In addition to research trends, domestic and international research trends, and economic prospects, the concept of microalgae and the element technologies of the biodiesel production process are briefly discussed introduced.

Enhanced and Balanced Microalgal Wastewater Treatment (COD, N, and P) by Interval Inoculation of Activated Sludge

  • Lee, Sang-Ah;Lee, Nakyeong;Oh, Hee-Mock;Ahn, Chi-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1434-1443
    • /
    • 2019
  • Although chemical oxygen demand (COD) is an important issue for wastewater treatment, COD reduction with microalgae has been less studied compared to nitrogen or phosphorus removal. COD removal is not efficient in conventional wastewater treatment using microalgae, because the algae release organic compounds, thereby finally increasing the COD level. This study focused on enhancing COD removal and meeting the effluent standard for discharge by optimizing sludge inoculation timing, which was an important factor in forming a desirable algae/bacteria consortium for more efficient COD removal and higher biomass productivity. Activated sludge has been added to reduce COD in many studies, but its inoculation was done at the start of cultivation. However, when the sludge was added after 3 days of cultivation, at which point the COD concentration started to increase again, the algal growth and biomass productivity were higher than those of the initial sludge inoculation and control (without sludge). Algal and bacterial cell numbers measured by qPCR were also higher with sludge inoculation at 3 days later. In a semi-continuous cultivation system, a hydraulic retention time of 5 days with sludge inoculation resulted in the highest biomass productivity and N/P removal. This study achieved a further improved COD removal than the conventional microalgal wastewater treatment, by introducing bacteria in activated sludge at optimized timing.