• Title/Summary/Keyword: microRNA-204

Search Result 5, Processing Time 0.027 seconds

MiR-204 acts as a potential therapeutic target in acute myeloid leukemia by increasing BIRC6-mediated apoptosis

  • Wang, Zhiguo;Luo, Hong;Fang, Zehui;Fan, Yanling;Liu, Xiaojuan;Zhang, Yujing;Rui, Shuping;Chen, Yafeng;Hong, Luojia;Gao, Jincheng;Zhang, Mei
    • BMB Reports
    • /
    • v.51 no.9
    • /
    • pp.444-449
    • /
    • 2018
  • Acute myeloid leukemia (AML) is one of the most common hematological malignancies all around the world. MicroRNAs have been determined to contribute various cancers initiation and progression, including AML. Although microRNA-204 (miR-204) exerts anti-tumor effects in several kinds of cancers, its function in AML remains unknown. In the present study, we assessed miR-204 expression in AML blood samples and cell lines. We also investigated the effects of miR-204 on cellular function of AML cells and the underlying mechanisms of the action of miR-204. Our results showed that miR-204 expression was significantly downregulated in AML tissues and cell lines. In addition, overexpression of miR-204 induced growth inhibition and apoptosis in AML cells, including AML5, HL-60, Kasumi-1 and U937 cells. Cell cycle analysis further confirmed an augmentation in theapoptotic subG1 population by miR-204 overexpression. Mechanistically, baculoviral inhibition of apoptosis protein repeat containing 6 (BIRC6) was identified as a direct target of miR-204. Enforcing miR-204 expression increased the luciferase activity and expression of BIRC6, as well as p53 and Bax expression. Moreover, restoration of BIRC6 reversed the pro-apoptotic effects of miR-204 overexpression in AML cells. Taken together, this study demonstrates that miR-204 causes AML cell apoptosis by targeting BIRC6, suggesting miR-204 may play an anti-carcinogenic role in AML and function as a novel biomarker and therapeutic target for the treatment of this disease.

Expression of MicroRNA-221 in Korean Patients with Multiple Myeloma (한국인의 다발성골수종 환자에서 MicroRNA-221의 발현)

  • Choi, Woo-Soon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.2
    • /
    • pp.197-204
    • /
    • 2018
  • Multiple myeloma (MM) is the leading cause of death among hematologic neoplasms. Recently, microRNA has been reported to be useful in the diagnosis of multiple myeloma. This study examined whether miR-221 could be used as a diagnostic marker for multiple myeloma. The study was performed on 20 patients with multiple myeloma without any other hematological diseases. MicroRNA extraction was performed using formalin-fixed paraffin-embedded (FFPE) tissues obtained from the bone marrow of patients with multiple myeloma. miR-15a, miR-16, miR-21, miR-181a, and miR-221 were selected as the microRNA target genes for multiple myeloma. The significance of microRNA was based on a fold change of <1.5. To quantify the fold changes, data normalized to the human gene, SNORD43, were used as the values of the patient group. Fold change values greater than 1.5 were defined as "overexpression", whereas values less than -1.5 were defined as "underexpression". Of note, 65.0% (13/20) of samples showed significant "overexpression" in the levels of miR-221 expression and plasma cells with a group of more and less than 30% in MM patients did not show any significance of plasma cell (P<0.05). The results of other studies showing a correlation between the expression of miR-221 and MM in Caucasians were confirmed. These results suggest that miR-221 may be a useful indicator for diagnosing patients with MM. In conclusion, miR-221 is useful in the diagnosis and determining the prognosis of multiple myeloma in Koreans.

MicroRNA-27 Promotes Odontoblast Differentiation via Wnt1 Signaling

  • Cho, Ji-Ho;Kim, Su-Gwan;Park, Byung-Sun;Go, Dae-San;Park, Joo-Cheol;Kim, Do Kyung
    • International Journal of Oral Biology
    • /
    • v.40 no.4
    • /
    • pp.197-204
    • /
    • 2015
  • MicroRNA (miRNA, miR) is essential in regulating cell differentiation either by inhibiting mRNA translation or by inducing its degradation. However, the role of miRNA in odontoblastic cell differentiation is still unclear. In this study, we examined the molecular mechanism of miR-27-mediated regulation of odontoblast differentiation in MDPC-23 mouse odontoblastic cells derived from mouse dental papilla cells. The results of the present study demonstrated that the miR-27 expression increases significantly during MDPC-23 odontoblastic cell differentiation. Furthermore, miR-27 up-regulation promotes the differentiation of MDPC-23 cells and accelerates mineralization without cell proliferation. The over-expression of miR-27 significantly increased the expression levels of Wnt1 mRNA and protein. In addition, the results of target gene prediction revealed that Wnt1 mRNA has an miR-27 binding site in its 3'UTR, and is increased by miR-27. These results suggested that miR-27 promotes MDPC-23 odontoblastic cell differentiation by targeting Wnt1 signaling. Therefore, miR-27 is a critical odontoblastic differentiation molecular target for the development of miRNA based therapeutic agents in dental medicine.

Downregulated MicroRNA-133a in Gastric Juice as a Clinicopathological Biomarker for Gastric Cancer Screening

  • Shao, Juan;Fang, Peng-Hua;He, Biao;Guo, Li-Li;Shi, Ming-Yi;Zhu, Yan;Bo, Ping;Zhang, Zhen-Wen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.5
    • /
    • pp.2719-2722
    • /
    • 2016
  • Circulatory miR-133a is a marker shared by several types of cancer. In this study we evaluated the feasibility of using miR-133a levels in gastric juice to screen for gastric cancer. A total of 204 samples of gastric juice and mucosa from gastric cancer, atrophic gastritis, gastric ulcer, superficial gastritis and healthy cases were collected by gastroscopy. The results showed that miR-133a levels in gastric juice and carcinoma tissues of patients with gastric cancer were significantly downregulated and positively correlated. Moreover, miR-133a in gastric juice has high operability, high reliability, high sensitivity, high specificity and relative stability, fit for clinical diagnosis of gastric cancer.

2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-Glucoside modulated human umbilical vein endothelial cells injury under oxidative stress

  • Guo, Yan;Fan, Wenxue;Cao, Shuyu;Xie, Yuefeng;Hong, Jiancong;Zhou, Huifen;Wan, Haitong;Jin, Bo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.6
    • /
    • pp.473-479
    • /
    • 2020
  • Endothelial cell injury is a major contributor to cardiovascular diseases. The 2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-Glucoside (TSG) contributes to alleviate human umbilical vein endothelial cells (HUVECs) injury through mechanisms still know a little. This study aims to clarify the TSG effects on gene expression (mRNA and microRNA) related to oxidative stress and endoplasmic reticulum stress induced by H2O2 in HUVECs. We found that TSG significantly reduced the death rate of cells and increased intracellular superoxide dismutase activity. At qRT-PCR, experimental data showed that TSG significantly counteracted the expressions of miR-9-5p, miR-16, miR-21, miR-29b, miR-145-5p, and miR-204-5p. Besides, TSG prevented the expression of ATF6 and CHOP increasing. In contrast, TSG promoted the expression of E2F1. In conclusion, our results point to the obvious protective effect of TSG on HUVECs injury induced by H2O2, and the mechanism may through miR16/ATF6/ E2F1 signaling pathway.