• Title/Summary/Keyword: microLED

Search Result 280, Processing Time 0.035 seconds

Present Status and Future Prospect of Quantum Dot Technology (양자점 (Quantum dot) 기술의 현재와 미래)

  • Hong, H.S.;Park, K.S.;Lee, C.G.;Kim, B.S.;Kang, L.S.;Jin, Y.H.
    • Journal of Powder Materials
    • /
    • v.19 no.6
    • /
    • pp.451-457
    • /
    • 2012
  • Nowadays, research and development on quantum dot have been intensively and comprehensively pursued worldwide in proportion to concurrent breakthrough in the field of nanotechnology. At present, quantum dot technology forms the main interdisciplinary basis of energy, biological and photoelectric devices. More specifically, quantum dot semiconductor is quite noteworthy for its sub-micro size and possibility of photonic frequency modulation capability by controlling its size, which has not been possible with conventionally fabricated bulk or thin film devices. This could lead to realization of novel high performance devices. To further understand related background knowledge of semiconductor quantum dot at somewhat extensive level, a review paper is presently drafted to introduce basics of (semiconductor) quantum dot, its properties, applications, and present and future market trend and prospect.

Compact battery-less guest guidance system at the EXPO 2005, Aichi Japan

  • Itoh, Hideo;Lin, Xin;Kaji, Ryosaku;Niwa, Tatsuya;Nakamura, Yoshiyuki;Nishimura, Takuichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2207-2210
    • /
    • 2005
  • Guest guidance system based on the compact battery-less information terminal, Aimulet, which has been developed by the authors of the National Institute of Advanced Industrial Science and Technology (AIST), Japan. Conventional Aimulet, which is Aimulet ver.1 or CoBIT, has features of location and direction sensitive information service device without batteries. On the other hand, the Aimulet has two subjects, one is multiplex and demultiplex of some contents, and the other is operation under sunshine. Former subject is of solved by the wavelength multiplex technique using LED emitter with different wavelength and dielectric optical filters. Latter subject is solved by new micro spherical solar cells with a visible-light-eliminating optical filter and a new design of light irradiation. These techniques are applied to the EXPO 2005, Aichi Japan and introduced in public. Aimulet GH is Former technique is applied on Aimulet GH, which is used in Orange Hall of the Global House, scientific museum with a fossil of a frozen mammoth.

  • PDF

Development of IoT based Real-Time Complex Sensor Board for Managing Air Quality in Buildings

  • Park, Taejoon;Cha, Jaesang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.75-82
    • /
    • 2018
  • Efforts to reduce damages from micro dust and harmful gases in life have been led by national or local governments, and information on air quality has been provided along with real-time weather forecast through TV and internet. It is not enough to provide information on the individual indoor space consumed. So in this paper, we propose a IoT-based Real-Time Air Quality Sensing Board Corresponding Fine Particle for Air Quality Management in Buildings. Proposed board is easy to install and can be placed in the right place. In the proposed board, the air quality (level of pollution level) in the indoor space (inside the building) is easy and it is possible to recognize the changed indoor air pollution situation and provide countermeasures. According to the advantages of proposed system, it is possible to provide useful information by linking information about the overall indoor space where at least one representative point is located. In this paper, we compare the performance of the proposed board with the existing air quality measurement equipment.

Comparison of the Effects of Nano-silver Antibacterial Coatings and Silver Ions on Zebrafish Embryogenesis

  • Yeo, Min-Kyeong;Yoon, Jae-Won
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.1
    • /
    • pp.23-31
    • /
    • 2009
  • To compare the effects of nanometer-sized silver ions and support materials (nano-silver coating material, NM-silver) and silver ions, we exposed zebrafish embryos to both types of nano-silver ions and compared the acute responses during embryogenesis. The amount of silver in the NM-silver (17.16%) was greater than that in the silver ion (4.56%). Both of these materials have different atomic compositions. The silver ion-exposed groups (10 and 20 ppt) showed lower survival rates than the NM-silver-exposed groups (10 and 20 ppt). NM-silver penetrated the skin and blood tube of zebrafish larvae as aggregated particles, whereas, silver ions penetrated the organelles, nucleus and yolk in a spread-out pattern. Micro-array analysis of RNA from zebrafish larvae (72 hours post-fertilization) that were treated with either NM-silver or silver ions, showed alteration in expression of the BMP, activin, TGF-$\beta$, and $GSK3{\beta}$ genes pathway. Additionally, $GSK3{\beta}$ gene pathway for apoptosis that was related with left-right asymmetry. Gene expression changes in the NM-silver or silver ions-treated zebrafish embryo led to phenotypic changes in the hatched larvae, reflecting increased apoptosis and incomplete formation of an axis.

Corrosion behavior of Mg-(0~6)%Zn Casting Alloys in 1M NaCl Solution (1M NaCl 용액에서 Mg-(0~6)%Zn 주조 합금의 부식 거동)

  • Hwang, In-Je;Kim, Young-Jig;Jun, Joong-Hwan
    • Journal of Korea Foundry Society
    • /
    • v.36 no.4
    • /
    • pp.117-125
    • /
    • 2016
  • The effects of the Zn content on the microstructure and corrosion behavior in 1M NaCl solution were investigated in Mg-(0~6)%Zn casting alloys. The MgZn phase was scarcely observed in the Mg-1%Zn alloy, while the Mg-(2~6)%Zn alloy consisted of ${\alpha}$-(Mg) and MgZn phases. With an increase in the Zn content, the amount of the MgZn phase was gradually increased. Immersion and electrochemical corrosion tests indicated that the Mg-1%Zn alloy had the lowest corrosion rate among the alloys, and a further increase in the Zn content resulted in the deterioration of the corrosion resistance. Microstructural examinations of the corroded surfaces and EIS analyses of surface corrosion films revealed that the best corrosion resistance at 1%Zn was associated with the absence of MgZn phase particles in the microstructure and the contribution of Zn element to the formation of a protective film on the surface. A micro-galvanic effect by the MgZn particles led to the increased rate of corrosion at a higher Zn content.

Modulation of autophagy by miRNAs

  • Kim, Yunha;Lee, Junghee;Ryu, Hoon
    • BMB Reports
    • /
    • v.48 no.7
    • /
    • pp.371-372
    • /
    • 2015
  • MicroRNAs (miRNAs) can regulate the expression of genes that are involved in multiple cellular pathways. However, their targets and mechanism of action associated with the autophagy pathway are not fully investigated yet. EWSR1 (EWS RNA-Binding Protein 1/Ewing Sarcoma Break Point Region 1) gene encodes a RNA/DNA binding protein that is ubiquitously expressed and plays roles in numerous cellular processes. Recently, our group has shown that EWSR1 deficiency leads to developmental failure and accelerated senescence via processing of miRNAs, but its role in the regulation of autophagy remains elusive. In this context, we further investigated and found that EWSR1 deficiency triggers the activation of the DROSHA-mediated microprocessor complex and increases the levels of miR125a and miR351, which directly target Uvrag. Interestingly, the miR125a- and miR351-targeted reduction of Uvrag led to the inhibition of autophagy in both ewsr1 knockout (KO) MEFs and ewsr1 KO mice. In summary, our study demonstrates that EWSR1 is associated with the posttranscriptional regulation of Uvrag via miRNA processing. The regulation of autophagy pathway in miRNAs-Uvrag-dependent manner provides a novel mechanism of EWSR1 deficiency-related cellular dysfunction. [BMB Reports 2015; 48(7): 371-372]

Formation of Thermal Bubble from Particle-Filled Microcavity (미세 입자로 충전된 캐비티에서의 열 기포 형성)

  • Jeong, Kwang-Hun;Lee, Heon-Ju;Chang, Young-Soo;Lee, Yoon-Pyo;Kim, Ho-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.3 s.258
    • /
    • pp.248-255
    • /
    • 2007
  • Thermal bubble formation is a fundamental process in nucleate boiling heat transfer and many microelectromechanical thermal systems. One of the established facts is that heterogeneous nucleation is originated from vapors trapped inside cavities. Based on this, we performed an experimental study on the formation of thermal bubbles from microcavity fabricated by microfabrication technology on a copper plate. The cavity was filled with aluminum particles to enhance thermal bubble formation. We observed the thermal bubble behaviors, such as bubble incipience, diameter, frequency and coalescence during nucleate boiling. The experimental data showed that the superheat required to trigger the bubble formation was significantly reduced when the cavity was filled with microparticles. We found that the initial increase of superheat led to the increase of both the departure diameter and frequency while the further increase of superheat caused multiple bubbles to coalesce resulting in the decrease of departure frequency.

Technology for the Multi-layer Nanoimprint Lithography Equipments and Nanoscale Measurement (다층 나노임프린트 리소그래피 시스템 및 나노측정기술)

  • Lee, JaeJong;Choi, KeeBong;Kim, GeeHong;Lim, HyungJun
    • Vacuum Magazine
    • /
    • v.2 no.1
    • /
    • pp.10-16
    • /
    • 2015
  • With the recognition of nanotechnology as one of the future strategic technologies, the R&D efforts have been performed under exclusive supports of governments and private sectors. At present, nanotechnology is at the focus of research and public attention in almost every advanced country including USA, Japan, and many others in EU. Keeping tracks of such technical trends, center for nanoscale mechatronics and manufacturing (CNMM) was established in 2002 as a part of national nanotechnology promotion policy led by ministry of science and technology (MOST) in Korea. It will hold widespread potential applications in electronics, optical electronics, biotechnology, micro systems, etc, with the promises of commercial visibility and competitiveness. In this paper, wafer scale multilayer nanoimprint lithography technology which is well-known the next generation lithography, roll-typed nanoimprint lithography (R-NIL), roll-typed liquid transfer imprint lithography (R-LTIL), the key technology for nanomanufacturing and nanoscale measurement technology will be introduced. Additionally, its applications and some achievements such as solar cell, biosensor, hard disk drive, and MOSFET, etc by means of the developed multilayer nanoimprint lithography system are introduced.

A Study on the Current Sensor Using an Optical Modulator with BSO (BSO와 ZnSe를 광 변조기로 이용한 전류센서에 관한 연구)

  • 김요희;이대영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.9
    • /
    • pp.721-728
    • /
    • 1991
  • In this paper, a magneto-optic modulator has been designed by using single crystal BSO and polycrystal ZnSe as Faraday cells. And practical core-type optical current sensors using pure iron and permalloy have been prepared and experimented. In order to obtain efficient magnetic field detection, LED(NEC OD08358, 0.87 $\mu$m) was used as optical source, PIN-PD(OD-8454)as optical receiver and multi-mode optical fiber (100/140$\mu$m) as transmission line. The characteristics matrix of the optical element was calculated by Stokes parameter, and optic modulation characteristics equations were derived by Muller matrix. Electromagnetic analysis program (FLUX 2D, micro VAX 3600) by finite element method was used to find the magnetic flux density around the core. The measuring error of the output voltage to input current has been masured below 5% in the range of 50A to 1000A. As the temperature was changed from -20$^{\circ}C$ to 60$^{\circ}C$, the maximum measurement error of the optical output has been found to be 0.5% at 60$^{\circ}C$. These experimental results show good temperature and linearity characteristics. The SNR of the overall system was 47dB in case of 600A (250.2 Oe) conductor current and the system has good noise immunity.

  • PDF

Development of New Reverse Micellar Microencapsulation Technique to Load Water-Soluble Drug into PLGA Microspheres

  • Kim Hyun Joo;Cho Mi Hyun;Sah Hong Kee
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.370-375
    • /
    • 2005
  • The objective of this study was to develop a new reverse micelle-based microencapsulation technique to load tetracycline hydrochloride into PLGA microspheres. To do so, a reverse micellar system was formulated to dissolve tetracycline hydrochloride and water in ethyl formate with the aid of cetyltrimethylammonium bromide. The resultant micellar solution was used to dissolve 0.3 to 0.75 g of PLGA, and microspheres were prepared following a modified solvent quenching technique. As a control experiment, the drug was encapsulated into PLGA microspheres via a conventional methylene chloride-based emulsion procedure. The micro­spheres were then characterized with regard to drug loading efficiency, their size distribution and morphology. The reverse micellar procedure led to the formation of free-flowing, spherical microspheres with the size mode of 88 ~m. When PLGA microspheres were prepared follow­ing the conventional methylene chloride-based procedure, most of tetracycline hydrochloride leached to the aqueous external phase: A maximal loading efficiency observed our experimental conditions was below $5\%$. Their surfaces had numerous pores, while their internal architecture was honey-combed. In sharp contrast, the new reverse micellar encapsulation technique permitted the attainment of a maximal loading efficiency of 63.19 $\pm$$0.64\%$. Also, the microspheres had smooth and pore-free surfaces, and hollow cavities were absent from their internal matrices. The results of this study demonstrated that PLGA microspheres could be successfully prepared following the new reverse micellar encapsulation technique.