• Title/Summary/Keyword: micro-tube

Search Result 301, Processing Time 0.026 seconds

Numerical Simulation of the Effect of Finite Diaphragm Rupture Process on Micro Shock Tube Flows (Micro shock tube 유동에 대한 유한 격막 파막과정의 영향에 관한 수치 해석적 연구)

  • Arun Kumar, R.;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.3
    • /
    • pp.37-46
    • /
    • 2013
  • Recent years have witnessed the use of micro shock tube in various engineering applications like micro combustion, micro propulsion, particle delivery systems etc. The flow characteristics occurring in the micro shock tube shows a considerable deviation from that of well established conventional macro shock tube due to very low Reynolds number and high Knudsen number effects. Also the diaphragm rupture process, which is considered to be instantaneous process in many of the conventional shock tubes, will be crucial for micro shock tubes in determining the near diaphragm flow field and shock formation. In the present study, an axi-symmetric CFD method has been applied to simulate the micro shock tube, with Maxwell's slip velocity and temperature jump boundary conditions. The effects of finite diaphragm rupture process on the flow field and the shock formation was investigated, in detail. The results show that the shock strength attenuates rapidly as it propagates through micro shock tubes.

An Experimental Study on Micro Shock Tube Flow (Micro Shock Tube 유동에 관한 실험적 연구)

  • Park, Jin-Ouk;Kim, Gyu-Wan;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.350-355
    • /
    • 2012
  • Past few years have seen the growing importance of micro shock tubes in various engineering applications. A pharma ballistic technique is one such application which uses micro shock tube to accelerate drug particles and penetrate into skin, thus avoiding the usual injection drug delivery system. But for the efficient design of such instruments requires the detailed knowledge of shock characteristics and flow field inside a micro shock tube. Due to many factors such as boundary layer, low Reynolds number and high Knudsen number shock propagation inside micro shock tubes will be quite different from that of the well established macro shock tubes. In the present study, experimental studies were carried out on a micro shock tube of 3 mm diameter to investigate flow characteristics and shock propagation. Pressure values were measured at different locations inside the driven section. From the experimental values other parameters like shock velocity, shock strength were found and shock wave diagram was constructed.

  • PDF

An Experimental Study on Micro Shock Tube Flow (Micro Shock Tube 유동에 관한 실험적 연구)

  • Park, Jin-Ouk;Kim, Gyu-Wan;Kim, Heuy-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.5
    • /
    • pp.74-80
    • /
    • 2012
  • Past few years have seen the growing importance of micro shock tubes in various engineering applications like micro combution, micro propulsion, particle delivery systems. But in order to efficiently apply Micro Shock Tube to such areas require the detailed knowledge of shock characteristics and flow field inside a micro shock tube. Due to many factors such as boundary layer, low Reynolds number and high Knudsen number shock propagation inside micro shock tubes will be quite different from that of the well established macro shock tubes. In the present study, experimental studies were carried out on micro shock tubes of two diameters to investigate flow characteristics and shock propagation. Pressure values were measured at different locations inside the driven section. From the experimental values other parameters like shock velocity, shock strength were found and shock wave diagram was constructed.

Evaporation Heat Transfer and Pressure Drop in Micro-Fin Tubes Before and After Tube-Expansion (마이크로핀관의 확관 전후 열전달 및 압력강하 변화 특성에 관한 연구)

  • Hwang, Yun-Uk;Kim, Min-Su
    • 연구논문집
    • /
    • s.34
    • /
    • pp.29-38
    • /
    • 2004
  • The objective of this study is to investigate the pressure drop and heat transfer characteristics of the micro-fin tubes before and after the tube-expansion process. Test tubes are single-grooved micro-fin tubes made of copper with an outer diameter of 9.52 mm before the tube-expansion. The direct heating method is applied in order to make the refrigerant evaporated in the micro-fin tubes. The test ranges of the heat flux, mass flux, and the saturation pressure are 5 to 15kW/$m^2$, 100 to 200 kg/$m^2s$ and 540 to 790 kPa, respectively. The effects of the mass flux, heat flux, and the saturation pressure of the refrigerant on the pressure drop and the heat transfer are presented for the refrigerant R22. In the test conditions of this study, the heat transfer coefficient for the micro-fin tube after the tube-expansion is about 16.5% smaller than that before the tube-expansion because the fin height of micro-fin is reduced and the fin shape becomes flatter. The micro-fin tube after the tube-expansion has about 7.7% greater average pressure drop than that before the tube-expansion process.

  • PDF

Numerical Prediction of the Flow Characteristics of a Micro Shock Tube

  • Arun Kumar, R.;Suryan, Abhilash;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.178-181
    • /
    • 2011
  • Recently, micro shock tube is being extensively used in various fields of engineering applications. The flow characteristics occurring in the micro shock tube may be significantly different from that of conventional macro shock tube due to very low Reynolds number and Knudsen number effects which are, in general, manifested in such flows of rarefied gas, solid-gas two-phase, etc. In these situations, Navier-Stokes equations cannot properly predict the micro shock tube flow. In the present study, a two-dimensional CFD method has been applied to simulate the micro shock tube, with slip velocity and temperature jump boundary conditions. The effects of wall thermal conditions on the unsteady flow in the micro shock tube were also investigated. The unsteady behaviors of shock wave and contact discontinuity were, in detail, analyzed. The results obtained show much more attenuation of shock wave, compared with macro-shock tubes.

  • PDF

Experimental Study of the Shock Wave Dynamics in Micro Shock Tube (Micro Shock Tube에서 발생하는 충격파 실험)

  • Park, Jinouk;Kim, Gyuwan;Kim, Heuydong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.54-59
    • /
    • 2013
  • Micro shock tubes are now-a-days used for a variety engineering applications such as in the field of aerospace, combustion technology and drug delivery systems. But the flow characteristics of micro shock tube will be different from that of well established conventional macro shock tube under the influence of very low Reynolds number and high Knudsen number formed due to smaller diameter. In present study, experimental studies were carried out to a closed end (downstream) Micro Shock Tube with two different diameters were investigated to understand the flow characteristics. Pressure values were measured at different locations inside the driver and driven section. The results obtained show that with the increase in diameter the shock propagation velocity increases as well as the effect of reflected shock wave will be more significant under the same diaphragm rupture pressure.

Some Aspects of Experimental in-Tube Evaporation

  • Ha, Sam-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.537-546
    • /
    • 2000
  • The heat transfer characteristics of refrigerant-oil mixture for horizontal in-tube evaporator have been investigated experimentally. A smooth copper tube and a micro-fin tube with nominal 9.5 mm outer diameter and 1500 mm length were tested. For the pure refrigerant flow, the dependence of the axial heat transfer coefficient on quality was weak in the smooth tube, but in the micro-fin tube, the coefficients were 3 to 10 times greater as quality increases. Oil addition to pure refrigerant in the smooth tube altered the flow pattern dramatically at low mass fluxes, with a resultant enhancement of the wetting area by vigorous foaming. The heat transfer coefficients of the mixture for low and medium qualities were increased at low mass fluxes. In the micro-fin tube, however, the addition of oil deteriorates the local heat transfer performance for most of the quality range, except for low quality. The micro-fin tube consequently loses its advantage of high heat transfer performance for an oil fraction of 5%. Results are presented as plots of local heat transfer coefficient versus quality.

  • PDF

Numerical Simulation of the Effect of Finite Diaphragm Rupture Process on Micro Shock Tube Flows

  • Arun Kumar, R.;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.309-317
    • /
    • 2012
  • Recent years have witnessed the use of micro shock tube in various engineering applications like micro combustion, micro propulsion, particle delivery systems etc. The flow characteristics occurring in the micro shock tube shows a considerable deviation from that of well established conventional macro shock tube due to very low Reynolds number and high Knudsen number effects. Also the diaphragm rupture process, which is considered to be instantaneous process in many of the conventional shock tubes, will be crucial for micro shock tubes in determining the near diaphragm flow field and shock formation. In the present study, an axi-symmetric CFD method has been applied to simulate the micro shock tube, with Maxwell's slip velocity and temperature jump boundary conditions. The effects of finite diaphragm rupture process on the flow field and the shock formation was investigated, in detail. The results show that the shock strength attenuates rapidly as it propagates through micro shock tubes.

  • PDF

Numerical Visualization of the Unsteady Shock Wave Flow Field in Micro Shock Tube

  • Arun, Kumar R.;Kim, Heuy-Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.40-46
    • /
    • 2012
  • Recently micro shock tube is extensively being used in many diverse fields of engineering applications but the detailed flow physics involved in it is hardly known due to high Knudsen number and strong compressibility effects. Unlike the macro shock tube, the surface area to volume ratio for a micro shock tube is very large. This unique effect brings many complexities into the flow physics that makes the micro shock tube different compared with the macro shock tube. In micro shock tube, the inter- molecular forces of working gas can play an important role in specifying the flow characteristics of the unsteady shock wave flow which is essentially generated in all kinds of shock tubes. In the present study, a CFD method was used to predict and visualize the unsteady shock wave flows using the unsteady compressible Navier-Stokes equations, furnished with the no-slip and slip wall boundary conditions. Maxwell's slip equations were used to mathematically model the shock movement at high Knudsen number. The present CFD results show that the propagation speed of the shock wave is directly proportional to the initial pressure and diameter of micro shock tube.

Heat transfer coefficients for single-Phase flow in a micro-fin tube (마이크로휜 관내의 단상유동 열전달계수)

  • 권정태;김무환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.423-430
    • /
    • 1998
  • Single phase heat transfer coefficients were measured for turbulent water flow in a micro-fin tube by using Wilson plot technique. An experiment for counterflow heat exchange between the micro-fin tube and its outer annulus passage was performed. The annulus side heat transfer resistance was varied and the overall heat transfer coefficients were measured. The single-phase heat transfer coefficients in a micro-fin tube were obtained by Wilson plot technique. Nusselt numbers based on the real heat transfer area and the nominal area were about 35% and 50% larger than those for smooth tube respectively Also, single-phase heat transfer correlations based on real heat transfer area and nominal area have been proposed for a micro-fin tube.

  • PDF