• Title/Summary/Keyword: micro-tensile strength

Search Result 327, Processing Time 0.032 seconds

Thermal and Mechanical Properties for Micro-and-Nano- Mixture Composites Based Epoxy (에폭시기반 나노와 마이크로 혼합 콤포지트의 열적 그리고 기계적특성)

  • O, Chung-Youn;Yu, Byoung-Bok;Park, Jae-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.31-31
    • /
    • 2010
  • Nano particles (10nm $SiO_2$) were silane-treated in order to modify the surface characteristics in a epoxy nanocomposite. Then, micro particles ($3{\mu}m$ SiO2) were poured into the epoxy nanocomposite using various mixing process and epoxy/micro-and-nanomixed composites (EMNC) were prepared. The thermal (Tg) and mechanical (tensile and flexural strength) properties were measured by DSC, DMA and UTM and the data was estimated by Weibull plot.

  • PDF

Al-7020의 Pulse-GMA용접에 관한 연구 2

  • 김재웅;허장욱;나석주;백운형
    • Journal of Welding and Joining
    • /
    • v.6 no.4
    • /
    • pp.54-62
    • /
    • 1988
  • Major problems in welding Al-7020 include shrinkage, rpopositgy in welds and loss of strength in the heat affected zone. Thus it is important to examine the mechanical properties and reliability of welds. In this study, a series of experiments was carried out to determine the mechanical properties such as micro-hardness distribution, tensile strength, porosity and residual stress distribution of the Al-7020 weldment made by pulse-GMA welding. The resuts of the experiemnts are as folows. 1) The micro-hardness of weld metal and heat affected zone was lower than that of the base metal. 2) The tensile strength of the deposited metal was much lower than that of the base metal. 3) The porrosity in weld metal zone was negligible under the adopted conditsion of experiemnts. 4) The residual stress in the weld metal was lower than that of the heat affected zone, because the weld metal was softened. And the mciro-hardness distribution, the tensile strength and the residual stess distribution of the weldment in the as-welded condition were compared with those of the weldment after heat treatment.

  • PDF

Comparison of bracket bond strength in various directions of force (교정용 브라켓에 가해지는 힘의 방향에 따른 결합강도의 비교)

  • Lee, Hyun-Jung;Lee, Hyung-Soon;Jeon, Young-Mi;Kim, Jong-Ghee
    • The korean journal of orthodontics
    • /
    • v.33 no.5 s.100
    • /
    • pp.359-370
    • /
    • 2003
  • The purpose of this study was to evaluate the bond strength of orthodontic brackets bonded to metal bar with chemically cured adhesive (Ortho-one, Bisco Co, USA) in various types and directions of force application. Three types of metal bracket with different bracket base configurations; Micro-Loc base(Tomy Co, Japan), Chessboard base(Daesung Co, Korea), Non-etched Foil-Mesh base(Dentaurum, Germany); were used in this study. Peel, shear, tensile bond strengths were measured by universal testing machine and compared each other. The peel force directions applied were $0^{\circ},\;15^{\circ},\;30^{\circ},\;45^{\circ},\;60^{\circ},\;75^{\circ},\;90^{\circ}$ And then, in consideration of the different surface area of the bracket bases, the bond strength Per unit area were calculated and compared. The results obtained were summarized as follows: 1. The bond strengths according to the types and the directions of the forces were greatest at the shear forces in all three bracket base configuration groups(p<0.01). 2. As the peel force direction grew higher in degree, peel bond strength decreased. The Patterns of peel bond strength change according to force direction was similar in all three bracket base configurations. The minimum bond strength was 60 degree-peel bond strengths in all three bracket base configurations. 3. In Micro-Loc base group, minimum peel bond strength$(_{60}PBS)$ was in $29\%$ level of shear bond strength and $52\%$ level of tensile bond strength. In Chessboard base group, $_{60}PBS$ was in $34\%$ level of shear bond strength and $61\%$ level of tensile bond strength. In Non-etched Foil-Mesh base group, $_{60}PBS$ was in $34\%$ level of shear bond strength and $55\%$ level of tensile bond strength. 4. The bond strengths per unit area were lowest in Non-etched Foil-Mesh base group and highest in Chessboard base group(p<0.05). However, there were no differences in shear bond strength, tensile bond strength, $75^{\circ}\;and\;90^{\circ}$ per unit area between Micro-Loc and Chessboard base groups.

Comparison of shear, tensile and shear/tensile combined bonding strengths in bracket base configurations (브라켓 기저부 형태에 따른 전단, 인장, 전단/인장복합결합강도의 비교)

  • Lee, Choon-Bong;Lee, Seong-Ho;Kim, Jong-Ghee
    • The korean journal of orthodontics
    • /
    • v.29 no.5 s.76
    • /
    • pp.599-611
    • /
    • 1999
  • The purpose of this study was to evaluate shear, tensile and shear/tensile combined bond strengths(SBS, TBS, S/TBS) in various orthodontic brackets bonded to human teeth with chemically cured adhesive (Ortho-one, Bisco, USA). Five types of metal brackets with various bracket base configurations (Micro-Loc base(Tomy, Japan), Chessboard base(Daesung, Korea), Non-Etched Foil Mesh base(Dentarum, Germany), Micro-Etched Foil Mesh base(Ortho Organiners, USA), Integral base(Unitek, USA)) were used in this study. Shear, tensile and shear/tensile combined bond strengths according to the direction of force were measured by universal testing machine. The bracket base surface after bond strength test were examined by stereoscope and scanning electron microscope. The assessment of resin remnant on bracket base surface was carried out by ARI(adhesive remnant index). The results obtained were summarized as follows, 1. In all brackets, SBS was in the greatest value(p<0.05), TBS was in 50% level and S/TBS was in 30% level of SBS. 2. In bond strength, Micro-Loc base bracket showed the maximum bond strength($SBS:22.86{\pm}1.37kgf,\;TBS:11.37{\pm}0.42kgf,\;S/TBS:6.69{\pm}0.34kgf$) and Integral base bracket showed the minimum bond strength($SBS:10.52{\pm}1.27kgf,\;TBS:4.27{\pm}1.08kgf,\;S/TBS:2.94{\pm}0.58kgf) (p<0.05). 3. In bond strength per unit area, Integral base bracket showed the minimum value, Micro-Loc base and Chessboard base brackets were in similar value(p>0.05). Non-Etched Foil Mesh base and Micro-Etched Foil Mesh base bracket were similar in SBS and TBS(p>0.05), but Micro-Etched Foil Mesh base bracket was greater than Non-Etched Foil Mesh base bracket in S/TBS(p<0.05). 4. Bond failure sites were mainly between bracket base and adhesive, therefore ARI scores were low.

  • PDF

Correlation Between Tensile Strength of Diaphragm and Resonance Frequency for Micro-Speaker (원형 마이크로스피커 진동판의 인장강도와 공명진동수 사이의 연관성)

  • Oh, Sei-Jin;Kim, Hae-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.299-307
    • /
    • 2009
  • In this study, the acoustical properties of micro-speaker had been studied as a function of diaphragm patterns. The diaphragm was divided into two sections, such as edge and dome sides. The pattern change at each side affected the tensile strength of diaphragm. As a result, the resonance frequency was varied with the change. With increasing the number of pattern at the edge side, it was increased at the first, but it reversed to the exponential decrease of that. It increased due to the increase of tensile strength to be caused by using "U" type of drill and whirlwind pattern, and decreasing of drill angle at the edge side. However, it was decreased due to the decrease of tensile strength to be by increasing the number of radiation pattern and dome hight, and decreasing the dome radius at the dome side.

Mechanical Properties and Fracture Behavior of Cylindrical Shell Type for Unidirectional CFRP Composite Material under Tension Load (원통형 셀 구조를 갖는 한방향 CFRP 적층 복합재료의 정적인장파괴거동)

  • 오환섭
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.273-278
    • /
    • 1998
  • In this paper, basic micro-mechanical properties of unidirectional CFRP composite shell such as bonding strength, fiber volume fraction and void fraction are measured and tensile strength test is performed with a fixture. And then fracture surfaces are observed by SEM. In case of basic micro-mechanical properties, bonding strength is reduce with decreasing of radius of each ply in a shell for the effect of residual stress, fiber volume fraction is smaller than plate, and void fraction is vise versa. For these reason, tensile strength of shell is smaller than plate fabricated with same prepreg. For failure mode shell has many splitted part along its length, and it is assumed that this phenomenon is caused by the difference of bonding strength for residual stress.

  • PDF

Effects of nano-silica and micro-steel fiber on the engineering properties of ultra-high performance concrete

  • Hakeem, Ibrahim Y.;Amin, Mohamed;Abdelsalam, Bassam Abdelsalam;Tayeh, Bassam A.;Althoey, Fadi;Agwa, Ibrahim Saad
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.295-312
    • /
    • 2022
  • This study investigates the effects of nano silica (NS) and micro steel fiber on the properties of ultra-high-performance concrete (UHPC). The experimental consists of three groups, each one with five percentages of NS content (0%, 2%, 4%, 6% and 8%) in addition to the 20% silica fume and 20% quartz powder proportioned according to the weight of cement added to the mixtures. In addition, three percentages of micro steel fibers (0%, 1% and 2%) were considered. Different mixtures with varying percentages of NS and micro steel fibers were prepared to set the water-to-binder ratio, such as 0.16% and 1.8% superplasticizer proportioned according the weight of the binder materials. The fresh properties, mechanical properties and elevated temperatures of the mixtures were calculated. Then, the results from the microstructure analyses were compared with that of the reference mixtureand it was found that 6% replacement of cement with NS was optimum replacement level. When the NS content was increased from 0% to 6%, the air content and permeability of the mixture decreased by 35% and 39%, the compressive and tensile strength improved by 21% and 18% and the flexural strength and modulus of elasticity increased by 20% and 11.5%, respectively. However, the effect of micro steel fibres on the compressive strength was inconclusive. The overall results indicate that micro steel fibres have the potential to improve the tensile strength, flexure strength and modulus of elasticity of the UHPC. The use of 6% NS together with 1% micro-steel fiber increased the concrete strength and reduce the cost of concrete mix.

Measurement of Micro-Tensile Properties using ESPI technique (ESPI 기법을 이용한 미소 인장 특성 추정)

  • Huh, Yong-Hak;Kim, Dong-Il;Yoon, Kyung-Jin;Kim, Koung-Suk;Oh, Chung-Seog
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.90-97
    • /
    • 2001
  • An electronic speckle pattern interferometry (ESPI) system for measuring tensile properties under micro-tensile testing has been developed. The system consists of an optical system and an image processing system. In the optical system, optical components for measurement of in-plane deformation are arranged on the path of He-Ne laser. In the image processing system, the window-based program for acquiring speckle pattern interferometric image was developed and deformation in a small specimen is continuously evaluated during the test. Using this system, tensile strain of copper foil was measured during tensile testing. Tensile specimen had the thickness and width of 22 and 500 ${\mu}{\textrm}{m}$, respectively. Tensile properties, including the elastic modulus, yielding strength and tensile strength, of the copper were evaluated and also plastic exponent and coefficient in the Ramberg-Osgood relationship were evaluated from the stress-strain curve.

  • PDF

Micro-tensile Test for Micron-sized SCS Thin Film (단결정 실리콘 박막의 미소인장 물성 평가)

  • Lee, Sang-Joo;Han, Seung-Woo;Kim, Jae-Hyun;Lee, Hak-Joo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.45-48
    • /
    • 2008
  • The mechanical behavior of small-sized materials has been investigated for many industrial applications, including MEMS and semiconductors. It is challenging to obtain accurate mechanical properties measurements for thin films due to several technical difficulties, including measurement of strain, specimen alignment, and fabrication. In this work, we used the micro-tensile testing unit with the real-time DIC (Digital Image Correlation) strain measurement system. This system has advantages of real time strain monitoring up to 50 nm resolution during the micro-tensile test, and ability to measure the young's modulus and Poisson's ratio at the same time. The mechanical properties of SCS (Single Crystal Silicon) are measured by uniaxial tension test from freestanding SCS which are $2.5{\mu}m$ thick, $200-500{\mu}m$ wide specimens on the (100) plane. Young's modulus, Poisson's ratio and tensile strength in the <110> direction are measured by micro-tensile testing system.

  • PDF

Study on Electrical and Mechanical Properties of High Viscosity Solid Epoxy / Silica and Alumina Composite (고점도형 고상에폭시/실리카와 알루미나 콤포지트의 전기적, 기계적 특성연구)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1330-1337
    • /
    • 2018
  • In this study, 40, 50, 60, and 70 wt% filler dispersed samples were prepared for the current GIS Spacer or environmentally friendly GIS. In the AC electrical breakdown, EMSC and EMAC decreased with increasing filler content, and EMSC showed better breakdown strength than EMAC. The mechanical properties such as tensile strength and flexural strength of EMSC and EMAC were also increased with increasing filler content. In addition, EMSC results in better mechanical properties than EMAC. The reason for this is considered to be one in which the influence of the interface is important.