• 제목/요약/키워드: micro-strain

검색결과 494건 처리시간 0.023초

가공경화와 산화층 형성에 의한 이상조직 저탄소강의 건식 미끄럼 마멸 거동 (Dry sliding wear behavior of plain low carbon dual phase steel by strain hardening and oxidation)

  • 유현석;김용석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.149-152
    • /
    • 2006
  • Dry sliding wear behavior of low carbon dual phase steel, of which microstructure consists of hard martensite in a ductile ferrite matrix, has been investigated. The wear characteristics of the dual phase steel was compared with that of a plain carbon steel which was normalized at $950^{\circ}C$ for 30min and then air-cooled. Dry sliding wear tests were carried out using a pin-on-disk type tester at various loads of 1N to 10N under a constant sliding speed condition of 0.2m/sec against an AISI 52100 bearing steel ball at room temperature. The sliding distance was fixed as 1000m for all wear tests. The wear rate was calculated by dividing the weight loss measured to the accuracy of $10^{-5}g$ by the specific gravity and sliding distance. The worn surfaces and wear debris were analyzed by SEM, EDS and a profilomter. Micro vickers hardness values of the cross section of worn surface were measured to analyze strain hardening behavior underneath the wearing surfaces. The were rate of the dual phase steel was lower than the plain carbon steel. Oxidation on the sliding surface and strain hardening were attributed for the higher wear resistance of the dual phase steel.

  • PDF

1.9wt%C 초고탄소 워크롤 단조 공정 : Part I - 기공생성 및 미세조직 분석 (Forging of 1.9wt%C Ultrahigh Carbon Workroll : Part I - Analysis on Void Formation and Microstructure)

  • 임형철;이호원;김병민;강성훈
    • 소성∙가공
    • /
    • 제22권8호
    • /
    • pp.456-462
    • /
    • 2013
  • Compression tests were conducted at the various temperatures and strain rates to investigate void formation and microstructures behavior of a 1.9wt%C ultrahigh carbon steel used in forged workrolls. The microstructure, grain size and volume fraction of cementite were determined using specimens deformed in the temperature range from 800 to $1150^{\circ}C$ and strain rates from 0.01 to 10/s. It was found from the microstructural analysis that the grain size is larger at higher temperatures and lower strain rate deformation conditions. In addition, a higher volume fraction of cementite was measured at lower temperatures. The brittle blocky cementite was fractured at $800^{\circ}C$ and $900^{\circ}C$ regardless of strain rate. As a result, numerous new micro voids were formed in the fragmented blocky cementite. It was also found that local melting can occur at temperatures of more than $1130^{\circ}C$. Therefore, the forging temperature should be controlled between $900^{\circ}C$ and $1120^{\circ}C$. The temperature rise, which depends on the anvil stroke and velocity, was estimated through cogging simulation to find the appropriate forging temperature and to prevent local melting due to plastic work.

CSG 재료의 압축강도 특성 및 동결융해 저항성 (Compressive Strength Properties and Freezing and Thawing Resistance of CSG Materials)

  • 연규석;김영익;현상훈;김용성
    • 한국농공학회논문집
    • /
    • 제52권1호
    • /
    • pp.51-59
    • /
    • 2010
  • The cemented sand and gravel (CSG) method is a construction technique that adds cement and water to rock-like materials, such as rivered gravel or excavation muck which that can be obtained easily at areas adjacent to dam sites. This study was performed to evaluate the unconfined compressive strength properties and freezing and thawing resistance of CSG materials with unit cement content. The three types of CSG-80, CSG-100 and CSG-120 with cement content were designed to evaluate the optimum water content, dry density, strength, stress-strain, micro structure and durability factor. As the results, the optimum water content ratio with cement content showed almost similar tendency, and the unconfined compressive strength and dry density increased as cement content increases. The strength ratio of 7 days for 28 days were in the range of 55~61 % and the strain ratio in stress-strain curve were in the range of 0.8~1.6 % nearby maximum strength in 28 days. It is expected that this study will contribute to increasing application of CSG method as well as to increasing the utilizing of CSG materials as a environmentally friendly CSG method.

굽힘하중에서 탄소섬유 복합적층재의 균열 발생 측정에 관한 연구 (The Investigation for Detection of Crack Initiation in the CFRP Laminates under Flexural Loading Test)

  • 이준혁;권오헌
    • 한국안전학회지
    • /
    • 제37권5호
    • /
    • pp.7-13
    • /
    • 2022
  • Digital image correlation (DIC) is a method used to measure the displacement and strain of structures. It involves transforming and analyzing images before and after deformation using correlation coefficients from irregular light and shade on the surface of structures. In the present study, a microspeckle pattern was applied to the surface of a specimen to identify initial cracking. The test specimen constituted CFRP composites laminated on a curved Al liner The specimen was manufactured by stacking 100 ply of CFRP prepregs in the 0° and 90° directions in a three-point bending test. The equivalent strain was evaluated through DIC analysis after monitoring deformation using a CCD camera. Fracture shape was observed using a microscope. The equivalent strain contour distribution was checked until the maximum load fracture occurred at the center of the test specimen. Variations in the strain indicated the initial occurrence and progression of microcracks. These results can be used to improve the accuracy of detecting micro crack initiation and to achieve structural stability.

Development and Verification of PZT Actuating Micro Tensile Tester for Optically Functional Materials

  • Kim Seung-Soo;Lee Hye-Jin;Lee Hyoung-Wook;Lee Nak-Kyu;Han Chang-Soo;Hwang Jai-Hyuk
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권3호
    • /
    • pp.477-485
    • /
    • 2005
  • This paper is concerned with the development of a micro tensile testing machine for optically functional materials such as single or poly crystalline silicon and nickel film. This micro tensile tester has been developed for testing various types of materials and dimensions. PZT type actuation is utilized for precise displacement control. The specifications of the PZT actuated micro tensile testers developed are as follows: the volumetric size of the tester is desktop type of 710mm' 200mm' 270mm; the maximum load capacity and the load resolution in this system are IKgf and 0.0152mgf respectively and; the full stroke and the stoke resolution of the PZT actuator are $1000{\mu}m$ and 10nm respectively. Special automatic specimen installing and setting equipment is applied in order to prevent unexpected deformation and misalignment of specimens during handling of specimens for testing. Nonlinearity of the PZT actuator is compensated to linear control input by an inverse compensation method that is proposed in this paper. The strain data is obtained by ISDG method that uses the laser interference phenomenon. To test the reliance of this micro tensile testing machine, a $200{\mu}m$ thickness nickel thin film and SCS (Single Crystalline Silicon) material that is made with the MEMS fabrication process are used.

Three-dimensional optimization and sensitivity analysis of dental implant thread parameters using finite element analysis

  • Geramizadeh, Maryam;Katoozian, Hamidreza;Amid, Reza;Kadkhodazadeh, Mahdi
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제44권2호
    • /
    • pp.59-65
    • /
    • 2018
  • Objectives: This study aimed to optimize the thread depth and pitch of a recently designed dental implant to provide uniform stress distribution by means of a response surface optimization method available in finite element (FE) software. The sensitivity of simulation to different mechanical parameters was also evaluated. Materials and Methods: A three-dimensional model of a tapered dental implant with micro-threads in the upper area and V-shaped threads in the rest of the body was modeled and analyzed using finite element analysis (FEA). An axial load of 100 N was applied to the top of the implants. The model was optimized for thread depth and pitch to determine the optimal stress distribution. In this analysis, micro-threads had 0.25 to 0.3 mm depth and 0.27 to 0.33 mm pitch, and V-shaped threads had 0.405 to 0.495 mm depth and 0.66 to 0.8 mm pitch. Results: The optimized depth and pitch were 0.307 and 0.286 mm for micro-threads and 0.405 and 0.808 mm for V-shaped threads, respectively. In this design, the most effective parameters on stress distribution were the depth and pitch of the micro-threads based on sensitivity analysis results. Conclusion: Based on the results of this study, the optimal implant design has micro-threads with 0.307 and 0.286 mm depth and pitch, respectively, in the upper area and V-shaped threads with 0.405 and 0.808 mm depth and pitch in the rest of the body. These results indicate that micro-thread parameters have a greater effect on stress and strain values.

광섬유 센서를 이용한 복합재의 파손 및 번형률 동시 측정 (Simultaneous Sensing of Failure and Strain in Composites Using Optical Fiber Sensors)

  • 방형준;강현규;홍창선;김천곤
    • Composites Research
    • /
    • 제14권5호
    • /
    • pp.12-19
    • /
    • 2001
  • 급격한 과도하중이나 충격 등에 의해서 발생만 복합적층 내부의 손상은 항공기 구조물과 같이 안전성이 중요시되는 구조의 신뢰성을 저하시키며 또한 큰 위험 요인이 될 수 있다. 따라서 본 연구에서는 구조의 건전성을 모니터링하고 파손여부를 실시간으로 감지하기 위해 단파장 레이저와 광대역광원을 동시에 적용한 광섬유 센서를 이용하여 변형률 및 파손을 실시간으로 동시에 모니터링 할 수 있는 시스템을 구성하였다 이때 서로 다른 파장대의 두 장원은 파장분할다중 송신기를 이용하여 하나의 광섬유 센서에 적용되었다 파손신호의 특징을 정량적으로 구분하기 위해 STFT와 Wavelet Transform 과 같은 시간 주파수 분석법을 사용하였으며, 광섬유 센서로 취득 긴 파손신호 및 변형률 측정값을 각각 압전 세라믹 센서와 스트레인게이지의 값과 서로로 비교하였다. 장시간동안 파손과 동시에 측정된 변형률의 값은 스트레인게이지의 측정값과 잘 일치하였으며 파손감지 시스템 또만 미세한 파손신호까지 민감하게 감지해 낼 수 있음을 알 수 있었다.

  • PDF

AI 원형 관의 2축 압축 변형특성에 미치는 압축속도의 영향 (The effect of compressive strain rate on biaxial compressive deformation characteristics of Al circular pipe)

  • 원시태;정현진;안희준;조황현;유종근
    • 한국금형공학회:학술대회논문집
    • /
    • 한국금형공학회 2008년도 하계 학술대회
    • /
    • pp.23-26
    • /
    • 2008
  • In order to examine the deformation characteristics of Al circular pipe underthe biaxial compression, the horizontal biaxial compression die for the experiment was manufactured. From this, in the various compressive strain rate (1 mm/min. ${\sim}$ 400 mm/min.)conditions, the circular pipes, which were made by Al materials, were investigated based on the properties change of cross section area, punch load and deformation behavior. The tensile and compressive strains were evaluated from micro Vickers hardness tester. From these results, the punch load and deformation characteristic of Al circular pipes were highly changed in the compressive strain rate about 200 mm/min. The Al circular pipes had the tendency that the punch load decreased with increasing the compressive strain rate. In addition, following as the change of the shape and position of neutral axis due to the deformation proceeding of the circular pipe, the special point of the internal circular pipe at maximum load showed the maximum deformation strain and the maximum measured hardness value. The CAE (computer aided engineering) simulation using Deform-2D program was performed on the circular pipe in order to know and verify the exact compressive deformation behavior. From these results, the experimentally measured results were reasonably in good agreement with the simulation results.

  • PDF

EFFECT OF CYCLIC STRAIN RATE AND SULFIDES ON ENVIRONMENTALLY ASSISTED CRACKING BEHAVIORS OF SA508 GR. 1A LOW ALLOY STEEL IN DEOXYGENATED WATER AT 310℃

  • Jang, Hun;Cho, Hyun-Chul;Jang, Chang-Heui;Kim, Tae-Soon;Moon, Chan-Kook
    • Nuclear Engineering and Technology
    • /
    • 제40권3호
    • /
    • pp.225-232
    • /
    • 2008
  • To understand the effect of the cyclic strain rate on the environmentally assisted cracking behaviors of SA508 Gr.1a low alloy steel in deoxygenated water at $310^{\circ}C$, the fatigue surface and a sectioned area of specimens were observed after low cycle fatigue tests. On the fatigue surface of the specimen tested at a strain rate of 0.008 %/s, unclear ductile striations and a blunt crack tip were observed. Therefore, metal dissolution could be the main cracking mechanism of the material at this strain rate. On the other hand, on the fatigue surfaces of the specimens tested at strain rates of 0.04 and 0.4 %/s, brittle cracks and flat facets, which are evidences of the hydrogen induced cracking, were observed. In addition, a tendency of linkage between the main crack and the micro-cracks was observed on the sectioned area. Therefore, at higher strain rates, the main cracking mechanism could be hydrogen induced cracking. Additionally, evidence of the dissolved MnS inclusions was observed on the fatigue surface from energy dispersive x-ray spectrometer analyses. Thus, despite the low sulfur content of the test material, the sulfides seem to contribute to environmentally assisted cracking of SA508 Gr.1a low alloy steel in deoxygenated water at $310^{\circ}C$.

Nonlocal strain gradient-based vibration analysis of embedded curved porous piezoelectric nano-beams in thermal environment

  • Ebrahimi, Farzad;Daman, Mohsen;Jafari, Ali
    • Smart Structures and Systems
    • /
    • 제20권6호
    • /
    • pp.709-728
    • /
    • 2017
  • This disquisition proposes a nonlocal strain gradient beam theory for thermo-mechanical dynamic characteristics of embedded smart shear deformable curved piezoelectric nanobeams made of porous electro-elastic functionally graded materials by using an analytical method. Electro-elastic properties of embedded curved porous FG nanobeam are assumed to be temperature-dependent and vary through the thickness direction of beam according to the power-law which is modified to approximate material properties for even distributions of porosities. It is perceived that during manufacturing of functionally graded materials (FGMs) porosities and micro-voids can be occurred inside the material. Since variation of pores along the thickness direction influences the mechanical and physical properties, so in this study thermo-mechanical vibration analysis of curve FG piezoelectric nanobeam by considering the effect of these imperfections is performed. Nonlocal strain gradient elasticity theory is utilized to consider the size effects in which the stress for not only the nonlocal stress field but also the strain gradients stress field. The governing equations and related boundary condition of embedded smart curved porous FG nanobeam subjected to thermal and electric field are derived via the energy method based on Timoshenko beam theory. An analytical Navier solution procedure is utilized to achieve the natural frequencies of porous FG curved piezoelectric nanobeam resting on Winkler and Pasternak foundation. The results for simpler states are confirmed with known data in the literature. The effects of various parameters such as nonlocality parameter, electric voltage, coefficient of porosity, elastic foundation parameters, thermal effect, gradient index, strain gradient, elastic opening angle and slenderness ratio on the natural frequency of embedded curved FG porous piezoelectric nanobeam are successfully discussed. It is concluded that these parameters play important roles on the dynamic behavior of porous FG curved nanobeam. Presented numerical results can serve as benchmarks for future analyses of curve FG nanobeam with porosity phases.