• 제목/요약/키워드: micro-scale

검색결과 1,166건 처리시간 0.024초

Modelling of graded rectangular micro-plates with variable length scale parameters

  • Aghazadeh, Reza;Dag, Serkan;Cigeroglu, Ender
    • Structural Engineering and Mechanics
    • /
    • 제65권5호
    • /
    • pp.573-585
    • /
    • 2018
  • This article presents strain gradient elasticity-based procedures for static bending, free vibration and buckling analyses of functionally graded rectangular micro-plates. The developed method allows consideration of smooth spatial variations of length scale parameters of strain gradient elasticity. Governing partial differential equations and boundary conditions are derived by following the variational approach and applying Hamilton's principle. Displacement field is expressed in a unified way to produce numerical results in accordance with Kirchhoff, Mindlin, and third order shear deformation theories. All material properties, including the length scale parameters, are assumed to be functions of the plate thickness coordinate in the derivations. Developed equations are solved numerically by means of differential quadrature method. Proposed procedures are verified through comparisons made to the results available in the literature for certain limiting cases. Further numerical results are provided to illustrate the effects of material and geometric parameters on bending, free vibrations, and buckling. The results generated by Kirchhoff and third order shear deformation theories are in very good agreement, whereas Mindlin plate theory slightly overestimates static deflection and underestimates natural frequency. A rise in the length scale parameter ratio, which identifies the degree of spatial variations, leads to a drop in dimensionless maximum deflection, and increases in dimensionless vibration frequency and buckling load. Size effect is shown to play a more significant role as the plate thickness becomes smaller compared to the length scale parameter. Numerical results indicate that consideration of length scale parameter variation is required for accurate modelling of graded rectangular micro-plates.

Nano/Micro-scale friction properties of Silicon and Silicon coated with Chemical Vapor Deposited (CVD) Self-assembled monolayers

  • 윤의성;;오현진;한흥구;공호성
    • KSTLE International Journal
    • /
    • 제5권2호
    • /
    • pp.37-43
    • /
    • 2004
  • Abstract : Nano/micro-scale friction properties were investigated on Si (100) and three self-assembled monolayers (SAMs) (PFOTC, DMDM, DPDM) coated on Si-wafer by chemical vapor deposition technique. Experiments were conducted at ambient temperature(24$pm$1$circ$C) and humidity(45$pm$5%). Friction at nano-scale was measured using Atomic Force Microscopy (AFM) in the range of 0-40nN normal loads. In both Si-wafer and SAMs, friction increased linearly as a function of applied normal load. Results showed that friction was affected by the inherent adhesion in Ssi-wafer, and in the case of SAMs the physical/chemical structures had a major influence. Coefficient of friction of these test samples at the micro-scale was also energies. In order to study the effect of contact area on coefficient of friction at the micro-scale, friction was measured for Si-wafer and DPDM against Soda Lime balls (Duke Scientiffic Corporation) of different radii (0.25 mm, 0.5 mm and 1 mm) at different applied normal loads (1500, 3000 and 4800 mN). Results showed that Si-wafer had higher coefficient of friction than DPDM. Further, unlike that in the case of DPDM, friction in Si-wafer was severely influenced by its wear. SEM evidences showed that solid-solid adhesion was the wear mechanism in Si-wafer.

AC Breakdown Property of Nano-$TiO_2$ and Micro-Silica filler Mixture of Epoxy Based Composites

  • Heo, J.;Jung, E.H.;Lim, K.J.;Kang, S.H.
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.150-150
    • /
    • 2009
  • In this paper, various kinds of epoxy based nanocomposites were made and AC breakdown properties of nano-$TiO_2$ and micro-silica filler mixture of epoxy based composites were studied by sphere to sphere electrode. Moreover, nano- and micro-filler combinations were adopted as an approach toward practical application of nanocomposite insulating materials. AC breakdown test was performed at room temperature $(25^{\circ}C)$, $80^{\circ}C$ and $100^{\circ}C$. The result shows breakdown strength about non-filled, nano-scale $TiO_2$, micro-scale silica and nano-$TiO_2$, micro-silica filled epoxy composites.

  • PDF

포토리소그라피를 이용한 마이크로 딤플의 밀도에 따른 마찰 특성 (Friction Characteristics for Density of Micro Dimples Using Photolithography)

  • 김석삼;채영훈
    • 대한기계학회논문집A
    • /
    • 제29권3호
    • /
    • pp.411-417
    • /
    • 2005
  • Surface texturing of tribological application is another attractive technology of friction reducing. Also, reduction of friction is therefore considered to be a necessary requirement for improved efficiency of machine. In this paper attempts to investigate the effect of density for micro-scale dimple pattern using photolithography on bearing steel flat mated with pin-on-disk. We demonstrated the lubrication mechanism for a Stribeck curve, which has a relationship between the friction coefficient and a dimensionless parameter for lubrication condition. It is found that friction coefficient is depended on the density of surface pattern. It was thus verified that micro-scale dimple could affect the friction reduction considerably under mixed and hydrodynamic lubrication conditions from based on friction map. Lubrication condition regime has an influence on the friction coefficient induced the density of micro dimple.

초소형 정적 연소실의 열손실 분석 (ANALYSIS OF HEAT LOSS IN A CONSTANT VOLUME MICRO COMBUSTOR)

  • 나한비;이대훈;권세진
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제25회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.231-235
    • /
    • 2002
  • A theoretical and experimental study on the combustion process in a constant volume micro combustor is described. Unlike in a macro scale constant volume combustor, the heat loss to the wall plays a major role in flame propagation in a micro micro combustor. In order to analyze the effect of heat loss on combustion phenomena, pressure transition from ignition was measured. A number of cylindrical micro combustors with different diameter and depth were used for experiment to study the effect of length scales and shape factor. The diameter of combustor ranged from 7.5mm to 22.5 mm and the height of cylinder was from 1mm to 4mm. Initial pressure was also varied for the experiment. The diagnostic methods were severely limited due to the size of the apparatus and uncertainties of certain quantities to be measured in a small-scale environment. An analytical method to derive physical quantities that are essential for performance prediction from the pressure measurements is described.

  • PDF

타원궤적 진동절삭 가공기를 이용한 미세 형상 가공 (Machining of Micro Structure using Elliptical Vibration Grooving Machine)

  • 김기대;노병국
    • 한국정밀공학회지
    • /
    • 제25권11호
    • /
    • pp.45-51
    • /
    • 2008
  • Successive micro-scale V-grooves and a grid of pyramids were machined by elliptical vibration tufting (EVC) to investigate feasibility of using EVC as an alternative method of creating micro-molds to photo-lithography and electroforming, which have been commonly employed. An elliptical vibration grooving machine was developed which consists of two orthogonally-arranged piezoelectric actuators, a diamond cutting tool, and a motorized xyz stage. The micro-scale features were machined on materials of copper, duralumin, nickel, and hastelloy and it was found that EVC significantly reduces cutting resistance and prohibits generation of side burrs and rollover burrs, thus resulting in improving machining qualify of micro-molds in ail experimented workpiece materials.

Double bonded Cooper-Naghdi micro sandwich cylindrical shells with porous core and CNTRC face sheets: Wave propagation solution

  • Yazdani, Raziye;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • 제24권6호
    • /
    • pp.499-511
    • /
    • 2019
  • In this paper, wave propagation of double-bonded Cooper-Naghdi micro sandwich cylindrical shells with porous core and carbon nanotube reinforced composite (CNTRC) face sheets are investigated subjected to multi-physical loadings with temperature dependent material properties. The governing equations of motion are derived by Hamilton's principle. Then, the influences of various parameters such as wave number, CNT volume fraction, temperature change, Skempton coefficient, material length scale parameter, porosity coefficient on the phase velocity of double-bonded micro sandwich shell are taken into account. It is seen that by increasing of Skempton coefficient, the phase velocity decreases for higher wave number and the results become approximately the constant. Also, by increasing of the material length scale parameter, the cut of frequency increases, because the stiffness of micro structure increases. The obtained results for this article can be used to detect, locate and quantify crack.

Dual Surface Modifications of Silicon Surfaces for Tribological Application in MEMS

  • Pham, Duc-Cuong;Singh, R. Arvind;Yoon, Eui-Sung
    • KSTLE International Journal
    • /
    • 제8권2호
    • /
    • pp.26-28
    • /
    • 2007
  • Si(100) surfaces were topographically modified i.e. the surfaces were patterned at micro-scale using photolithography and DRIE (Deep Reactive Ion Etching) fabrication techniques. The patterned shapes included micro-pillars and microchannels. After the fabrication of the patterns, the patterned surfaces were chemically modified by coating a thin DLC film. The surfaces were then evaluated for their friction behavior at micro-scale in comparison with those of bare Si(100) flat, DLC coated Si(100) flat and uncoated patterned surfaces. Experimental results showed that the chemically treated (DLC coated) patterned surfaces exhibited the lowest values of coefficient of friction when compared to the rest of the surfaces. This indicates that a combination of both the topographical and chemical modification is very effective in reducing the friction property. Combined surface treatments such as these could be useful for tribological applications in miniaturized devices such as Micro-Electro-Mechanical-Systems (MEMS).

Static stability analysis of axially functionally graded tapered micro columns with different boundary conditions

  • Akgoz, Bekir
    • Steel and Composite Structures
    • /
    • 제33권1호
    • /
    • pp.133-142
    • /
    • 2019
  • In the present study, microstructure-dependent static stability analysis of inhomogeneous tapered micro-columns is performed. It is considered that the micro column is made of functionally graded materials and has a variable cross-section. The material and geometrical properties of micro column vary continuously throughout the axial direction. Euler-Bernoulli beam and modified couple stress theories are used to model the nonhomogeneous micro column with variable cross section. Rayleigh-Ritz solution method is implemented to obtain the critical buckling loads for various parameters. A detailed parametric study is performed to examine the influences of taper ratio, material gradation, length scale parameter, and boundary conditions. The validity of the present results is demonstrated by comparing them with some related results available in the literature. It can be emphasized that the size-dependency on the critical buckling loads is more prominent for bigger length scale parameter-to-thickness ratio and changes in the material gradation and taper ratio affect significantly the values of critical buckling loads.

MCST bending formulation of a cylindrical micro-shell based on TSDT

  • Mohammad Arefi
    • Earthquakes and Structures
    • /
    • 제26권4호
    • /
    • pp.299-309
    • /
    • 2024
  • The present paper develops application of third-order shear deformation theory (TSDT) and modified couple stress theory (MCST) to size-dependent bending analysis of a functionally graded cylindrical micro-shell. The radial and axial displacement components are described based on TSDT for more accurate analysis. The effect of small scales is accounted based on MCST. The principle of virtual work is used for derivation of bending governing equations. The solution is presented for a simply-supported boundary condition to account the influence of various important parameters such as micro length scale parameter, in-homogeneous index and some dimensionless geometric parameters such as length to radius and length to thickness ratios on the bending results. A comparative analysis is presented to examine the effect of order of employed shear deformation theory on the axial and radial displacements.