• Title/Summary/Keyword: micro-pressure wave

Search Result 101, Processing Time 0.023 seconds

A Numerical Study on the Effect of Pressure Relief Ducts on the Normal Pressure in a Preliminary Design of Honam-Jeju Subsea Tunnel (호남-제주 해저터널 가상설계의 공기압력 제어 덕트가 열차 주행에 미치는 영향에 대한 수치해석 연구)

  • Seo, Sangyeon;Ha, Heesang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.8
    • /
    • pp.17-27
    • /
    • 2016
  • High-speed trains have been developed widely in European countries and Japan in order to transport large quantity of people and commodities in short time. Additionally, a high speed train is one of the most desirable and environmentally friendly transportation methods. When a high speed train enters a tunnel, aerodynamic resistance is generated suddenly. This resistance causes micro pressure wave and discomfort to passengers. Due to this aerodynamic pressure against the train, a large amount of traction is required for the operation of a train in a tunnel. Therefore, it is essential to incorporate a pressure relief system in a tunnel in order to reduce aerodynamic resistance caused by a high-speed train. A pressure relief duct and a vertical shaft are representative measures in a tunnel. This study represents the effect of pressure relief ducts in order to alleviate positive and negative normal pressures acting on a train. One-dimensional numerical simulations were carried out in order to estimate the effect of pressure relief systems.

Thermoelastic dynamic analysis of wavy carbon nanotube reinforced cylinders under thermal loads

  • Moradi-Dastjerdi, Rasool;Payganeh, Gholamhassan
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.315-326
    • /
    • 2017
  • In this work, thermoelastic dynamic behavior of functionally graded carbon nanotube reinforced composite (FG-CNTRC) cylinders subjected to mechanical pressure loads, uniform temperature environment or thermal gradient loads is investigated by a mesh-free method. The material properties and thermal stress wave propagation of the nanocomposite cylinders are derived after solving of the transient thermal equation and obtaining of the time history of temperature field of the cylinders. The nanocomposite cylinders are made of a polymer matrix and wavy single-walled carbon nanotubes (SWCNTs). The volume fraction of carbon nanotubes (CNTs) are assumed variable along the radial direction of the axisymmetric cylinder. Also, material properties of the polymer and CNT are assumed temperature-dependent and mechanical properties of the nanocomposite are estimated by a micro mechanical model in volume fraction form. In the mesh-free analysis, moving least squares shape functions are used to approximate temperature and displacement fields in the weak form of motion equation and transient thermal equation, respectively. Also, transformation method is used to impose their essential boundary conditions. Effects of waviness, volume fraction and distribution pattern of CNT, temperature of environment and direction of thermal gradient loads are investigated on the thermoelastic dynamic behavior of FG-CNTRC cylinders.

Study on Aging Characteristics of Thru-Bulkhead Initiator (격벽착화기 노화특성 연구)

  • Kang, Wonkyu;Jang, Seung-gyo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.2
    • /
    • pp.43-51
    • /
    • 2020
  • After the accelerated aging, the bulkhead initiator using high explosives was carried out to verify aging characteristics. The Thru-Bulkhead Initiator operates by transmitting shock-wave generated from micro-initiator to the acceptor and the ignition explosives through the bulkhead. In order to evaluate the life-time of the product, the accelerated aging condition was set according to the life-time, and the ignition performance of the sample was measured every 10 cycles by measuring the delay time and the maximum pressure through the 10cc closed bomb test. In addition, variance analysis was used to determine aging.

A Study of Combustion Instability Mode in Dual Swirl Gas Turbine Combustor by PLIF and Chemiluminescence Measurement (PLIF 및 자발광 계측을 이용한 이중선회 가스터빈 연소기에서 연소불안정 모드 연구)

  • Choi, Inchan;Lee, Keeman;Juddoo, Mrinal;Masri, A.R.
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.1
    • /
    • pp.29-38
    • /
    • 2014
  • This paper described an experimental investigations of combustion instability mode in a lean premixed dual swirl combustor for micro-gasturbine system. When such the instability occurs, a strong coupling between pressure oscillations and unsteady heat release excites a self-sustained acoustic wave which results in a loud, annoyed sound and may also lead a structural damage to the combustion chamber. The detailed period of flame behavior and heat release in combustion instability mode have been examined with high speed OH and CH-PLIF system and $CH^*$ chemiluminescence measurement, flame tomography with operated at 10 kHz and 6 kHz each. Experiment results suggest that unstable flame behavior has a specific frequency with 200 Hz and this frequency is accords with about 1/2 sub-harmonic of combustor resonance frequency, not fundamental frequency. This is very interesting phenomenon that have not reported yet from other previous works. Therefore, when a thermo-acoustic instability with Rayleigh criterion occurs, the fact that the period of heat release and flame behavior are different each other was proposed for the first time through this work.

Effect of Cavitation Amplitude on the Electrochemical Behavior of Super Austenitic Stainless Steels in Seawater Environment (해수 환경에서 슈퍼 오스테나이트 스테인리스강의 전기화학적 거동에 미치는 캐비테이션 진폭의 영향)

  • Heo, Ho-Seong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.138-146
    • /
    • 2022
  • The cavitation and potentiodynamic polarization experiments were conducted simultaneously to investigate the effect of cavitation amplitude on the super austenitic stainless steel (UNS N08367) electrochemical behavior in seawater. The results of the potentiodynamic polarization experiment under cavitation condition showed that the corrosion current density increased with cavitation amplitude increase. Above oxygen evolution potential, the current density in a static condition was the largest because the anodic dissolution reaction by intergranular corrosion was promoted. In the static condition, intergranular corrosion was mainly observed. However, damage caused by erosion was observed in the cavitation environment. The micro-jet generated by cavity collapse destroyed the corrosion product and promoted the repassivation. So, weight loss occurred the most in static conditions. After the experiment, wave patterns were formed on the surface due to the compressive residual stress caused by the impact pressure of the cavity. Surface hardness was improved by the water cavitation peening effect, and the hardness value was the highest at 30 ㎛ amplitude. UNS N08367 with excellent mechanical performance due to its high hardness showed that cavitation inhibited corrosion damage.

Analysis of aerodynamic characteristics for the selection of cross-section to the TBM railway tunnels (TBM 철도터널 단면선정을 위한 공기역학적 특성 분석)

  • Lee, Ho-Keun;Kang, Hyun-Wook;Kim, Hyun-Soo;Kim, Hong-Moon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.6
    • /
    • pp.625-635
    • /
    • 2013
  • Although the TBM method is mainly adopted in overseas market including the Europe, etc, the method scarcely adopted in domestic market. For highly enhancing applications of the TBM method for railway, It is needed to select the optimal cross-section considering design elements of civil engineering and aerodynamic effects. Also, it is needed to establish plan of proper section as well as reviewing aerodynamic effects and consideration about civil engineering elements such as length of tunnel, speed of railway, height of whole lines and size of utility tunnel, etc. Even though it should be recently considered high-speed railway tunnels and required to be standard establishments in aerodynamic reviews, it is being applied to be criteria of inconsistent pneumatic analysis owing to be not related with domestic standards. In this study, therefore, we are willing to establishment of domestic and foreign aerodynamic standards and investigate correlation between optimal cross-section and aerodynamic effects of TBM railway tunnels.

Study on the Load-Carrying Capacity of Finite-Width Slider Bearing with Wavy Surface (표면웨이브가 존재하는 유한폭 슬라이더 베어링의 지지하중 특성에 관한 연구)

  • Shin, Jung-Hun;Lee, Gi-Chun;Park, Jong-Won;Kang, Bo-Sik;Kim, Kyung Woong
    • Tribology and Lubricants
    • /
    • v.29 no.1
    • /
    • pp.13-18
    • /
    • 2013
  • Slider bearing is a widely used load-carrying element in the industry. While a large number of studies have investigated the effect of overall surface curvature, very few have considered sinusoidal surface. Recently, consideration of surface roughness/waviness or intentional wave design has been identified as an important issue in the manufacture of hard disk driver, mechanical seal, hydraulic machine, and etc. This study investigated the load-carrying capacity of a finite-width slider bearing with a wavy surface. Film thickness ratios, length-width ratio, ambient pressure, amplitude, and partial distribution were selected as the simulation parameters. The calculation results showed that the load-carrying capacity rapidly varied at small film thickness ratio, but the waviness near the area of minimum film thickness made much more influence with an increase in film thickness ratio. As the length-width ratio of bearing was increased, ambient pressure became more influential at small film thickness ratios. Furthermore a particular partial distribution of the wavy area led to higher load-carrying capacity than did the whole distribution. Consequently, the results of this study are expected to be of use in surface micro-machining of finite-width slider bearings.

Characteristics of Acoustic Emission by Expansive Cement Induced Rock Fractures (팽창성 시멘트에 의한 암석균열시의 AE 특성)

  • 김교원
    • The Journal of Engineering Geology
    • /
    • v.8 no.3
    • /
    • pp.207-213
    • /
    • 1998
  • A study was conducted to determine the characteristics of acoustic emission(AE) events generated by the expansive cement induced rock fracturing. The dominant frequency and the maximum amplitude of the AE events are changed in relation to the rate of expansive pressure development in the hole. The dominant frequencies are in the range of 150∼230kHz for the small hole tests and 400∼500kHz for the large hole test. The maximum amplitudes are in the range of 0.015∼0.050cm/sec and 0.025∼0.064cm/sec, respectively. The fact that AE events of higher amplitude with higher frequency on the large hole test and lower amplitude with lower frequency on the small hole tests were detected, may strongly imply that the amount of energy consumed for a macro-crack in both tests may be similar. The expansive cement induced crack propagates stably without any distinguished event having higher amplitude and this implies that a macro-crack is a result of stable growth of micro cracks.

  • PDF

Korea High Speed Train Design - focused on aerodynamic optimal form design development (한국형 고속전철 디자인 -공기역학적 최적형상 디자인개발을 중심으로-)

  • 이병종
    • Archives of design research
    • /
    • v.17 no.3
    • /
    • pp.123-132
    • /
    • 2004
  • This paper shows a study on the "Korean High Speed Train Design" method, its design process and the result in the form of aerodynamic optimal exterior design development of a prototype test train(HSR 350${\times}$). It was developed from 1996 until 2002, six years long in R '||'&'||' D project titled "Development of High Speed Railway Technology" The end result of the project is a prototype test train, which has two power cars, two motorized trailers and three trailers, had been tested successfully in the year 2003 to the highest speed limit 380km/h on high speed line. The improved conceptual design work of a new commercial train and next generation's train is also performed for future needs.uture needs.

  • PDF

Analysis of Mechanical Behavior of Existing Tunnel by the Construction of Shaft Nearby (근접한 수직구 건설에 따른 기존 터널의 역학적 거동 분석)

  • 이석원;조만섭;이성원
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.109-122
    • /
    • 2003
  • In order to release the pressure fluctuations and micro-pressure wave induced by the entering of train into the small cross sectional tunnel, it has been reported that the construction of air shaft has more advantages with respect to economy and constructability than the enlargement of cross section of existing tunnel. The field monitorings and analytical studies were conducted simultaneously in this study to analyze the mechanical behavior of existing railway tunnel, new cross tunnel and new shaft by the construction of new shaft nearby. The results showed that the minimum distance from existing tunnel to new shaft which secures the stability of existing tunnel was found to be half diameter of existing tunnel. On the three dimensional mechanical behavior of existing tunnel by the construction of new shaft, the results from the analytical study and field monitoring had a similar trend. The analytical study and field monitoring results, however, produced somewhat different results on the mechanical behavior of new shaft itself. These conclusions induce that the analytical method which has been applied on the analyses of horizontal tunnel could not be applied in the same way on the analysis of vertical shaft.