• Title/Summary/Keyword: micro-phytoplankton

Search Result 33, Processing Time 0.025 seconds

Control of Cyanobacteria and Phytoplankton Using Physico-chemical Methods (물리·화학적 방법을 이용한 Cyanobacteria와 식물 플랑크톤의 제어)

  • Jheong, Weon-Hwa;Jeon, Eun-Hyung;Ahn, Tea-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.5
    • /
    • pp.75-84
    • /
    • 2004
  • Loess, PAC, MACF and plants were applied to the control of the phytoplankton bloom in laboratory and in field, In field experiment using oil fence, 5ppm concentration of coagulant(PAC) was observed to be effective in controlling the cyanobacterial bloom, resulting in 90% removal of cyanobacteria and phytoplankton from the water column, hi case of Synedra sp., however, only 50% of biomass decreased with the same PAC concentration. MACF(micro-air bubble coagulation and floating), a kind of physicochemical method, was applied to the column of the Kyongan stream and resulted in over 80% chlorophyll a and 73.5% TP removal, Chlorophyll a and total phosphorus were effectively removed from water body when 2.0 g/L of loess with the particle radius of 125 ${\mu}m$ was inputted. In case of experiments involving plants, big cone pine, gingko, and pine needle were observed to be effective in restraining phytoplankton bloom at 0.5g/200ml level. During a field test done at Kyungan stream, where Microcystis heavily occurred, Pine needle and big cone pine were observed to be effective on suppressing algal growth.

Influence of Discontinuous Layer on Plankton Community Structure and Distribution in Masan Bay, Korea (마산만에서 관찰된 불연속층과 플랑크톤 군집구조와의 관계)

  • HAN Myung-Soo;KIM Se-Wha;KIM Young-Ok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.6
    • /
    • pp.459-471
    • /
    • 1991
  • The community structure and micro-scale distribution of plankton in relation to hydrography were investigated in Masan Bay, Korea in October 1989. Warmer and less saline waters with stratification was located in the inner part of the Pudo Strait, and chlorophyll-a and nutrients were higher. Both phytoplankton biomass and nutrients was changed dramatically around the Strait. Offshore/oceanic species in phytoplankton i.e., Chaetoceres decipiens, Rhizosolenia stolterforthii, Rhizosolenia styliformis and Ceratium trichoceros and zooplankton i.e., Sagitta enflata, Oncaea uenusta and Oikopluera longicaudata occurred mainly in well mixed waters of the outer part. This suggests that discontinuous layer seems to play an important role as an approximate border for the plankton population. This layer was located between Station 3 and Station 4 near the Pudo Strait, since the layer consisted of a series of micro-scale discontinuties of salinity and dissolved inorganic nutrients gradient. Phytoplankton patchs of more than 801e1 were found only in the inner part of the bay. Depletion of silicate caused by a rapid assimilation of phytoplankton in the inner part of the bay seemed to be responsible for the decline of blooms.

  • PDF

Effect of Salinity Change on Biological Structure between Primary Producers and Herbivores in Water Column (해수층의 염분 변화가 일차생산자와 상위소비자의 크기구조에 미치는 영향)

  • SIN, YONGSIK;SOH, HOYOUNG;HYUN, BONGKIL
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.2
    • /
    • pp.113-123
    • /
    • 2005
  • Samples were collected to investigate the effect of salinity change on biological interaction between primary producers and herbivores in water column of the Youngsan estuary (Mokpo Harbor) at 8 stations from October 2003 to September 2004. The highest river freshwater inputs were introduced into the estuary from the Youngsan dike during summer (June and July 2004). Ranges of salinity were between 6 and 28.9 psu when the gates of dike were open whereas the ranges were between 24.4 and 30.3 psu when the gates were closed. Algal bloom occurred in February and July when the gates were not open at the upper region of the Youngsan estuary and the bloom was dominated $(70\%)$ by large cells of phytoplankton $(micro-sized;>20{\mu}m).\;Nano-sized (2-20{\mu}m)$ and pico-sized phytoplankton $(<2{\mu}m)$ were dominant in October, November 2003, June, August and September 2004 when the gates were open suggesting that size structure was affected by river discharge from the dike. Micro-and meso-zooplankton (herbivores) displayed the similar pattern to that of phytoplankton. The biomass of zooplankton was higher when the gates were closed than when the gates open and also the biomass was higher at the upper region of the harbor system. This results suggest that freshwater inputs affect size structure and biomass of phytoplankton by changing salinity, nutrient inputs, turbidity or light level In water column resulting in the change of the interaction between primary producters and herbivores in the Youngsan estuary.

The Influences of Coastal Upwelling on Phytoplankton Community in the Southern Part of East Sea, Korea (동해 남부 연안 해역에서 냉수대 발생이 식물플랑크톤 군집에 미치는 영향)

  • Kim, A-Ram;Youn, Seok-Hyun;Chung, Mi-Hee;Yoon, Sang-Chol;Moon, Chang-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.4
    • /
    • pp.287-301
    • /
    • 2014
  • In order to understand environment condition and phytoplankton community before and after coastal upwelling, the influences of upwelling events on phytoplankton community were studied at 18 stations located the Southern part of East Sea, Korea from May to August 2013. The surface water masses showed low temperature and high salinity due to upwelling events at coastal stations (A1, B1, C1). Correlation between temperature and nutrients (DIP, r=-0.218, p<0.01; DIN, r=-0.306, p<0.01; silicate, r=-0.274, p<0.01) was significantly negative. This result could be explained that nutrients were supplied to surface water by the upwelling of bottom water. Phytoplankton communities were composed of 186 species. Phytoplankton abundance were relatively high in May (C1, $726{\times}10^3cells\;L^{-1}$) and July (A1, $539{\times}10^3cells\;L^{-1}$). Total chlorophyll a and micro-size fraction ($&gt;20{\mu}m$) increased at coastal stations in July and August, while phytoplankton abundance and total chl. a was much low in June. Dominant species in June was Pseudo-nitzschia spp. of which the cell size was $309{\mu}m^3$. Cell size of Pseudo-nitzschia spp. was smaller than dominant species in other period. Therefore, the increase in total chloro-phyll a and the size of phytoplankton was resulted in the sufficient supply of nutrients. In contrast, these tendencies were not observed at outside stations. These results suggested that coastal upwelling was an important influencing factor to determine the species composition and standing stock of phytoplankton community in the coastal waters of the Southern part of East Sea, Korea.

Vertical Profiles of Marine Environments and Micro-phytoplankton Community in the Continental Slope Area of the East China Sea in Early Summer 2009 (이른 여름 동중국해 대륙사면의 해양환경과 소형 식물플랑크톤 군집의 연직분포 특성)

  • Yoon, Yang Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.3
    • /
    • pp.151-162
    • /
    • 2013
  • Studies of the distribution of micro-phytoplankton community and chlorophyll a concentration have focused on the vertical profiles of marine environmental factors such as water temperature, salinity, sigma-t, light intensity, and dissolved oxygen in the continental slope on the east parts of East China Sea in the early summer of 2009. Water temperature showed a gradual reduction according to the depth. While the salinity was low in the surface layer showing a mixed down to the relatively subsurface layer, it was increased with an increase in the depth at the middle and bottom layers showing a maximum value at 150~200 m followed by a decreasing aspect afterwards, although the change was not large. The change of sigma-t was governed by the water temperature, and gradually increased in the surface layer with an increase in the depth, showing a value higher than in the surface layer by about 3 $kg/m^3$ at the bottom layer. Although the intensity of light was exponential reduced in the surface layer, the compensation depth was located at the depth of about 80m. The vertical profiles of chlorophyll a concentration was governed by the intensity rather than the changes in water temperature or salinity, exhibiting a maximum value at the compensation depth corresponding to 1% in the surface light intensity. The micro-phytoplankton communities consisted of 56 genera 103 species showing a relatively variety, while the standing crop was also changed to 112.0~470.0 cells/L in the pelagic environment, showing a maximum chlorophyll a concentration. Although a variety of dominant species appear at low dominance without dominant species appearing with a right-wing point in the phytoplankton communities, the silicoflagellate, Otactis otonaris at the station A and the dominance of 26% due to Leptocylindrus mediterraneus at the station C have been judged to be unusual. For community analysis of infinitesimal creatures such as phytoplankton of oligotrophic waters through the present study, ecology studies through vertical sample collection agreeing with the results of continuous observation such as identification of vertical distribution in a marine environment or of maximum chlorophyll layers have been considered rather than a survey method with intervals of a given depth such as surface, subsurface, middle and bottom layers.

Temporal and Spatial Variations of Size-structured Phytoplankton in the Asan Bay (아산만 식물플랑크톤 크기구조의 시.공간적 변동)

  • Hyun Bong-Kil;Sin Yong-Sik;Park Chul;Yang Sung-Ryull;Lee Young-Joon
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.1 s.61
    • /
    • pp.7-18
    • /
    • 2006
  • Samples were collected from five stations monthly from October 2003 to September 2004 to investigate seasonal variation of size structure of phytoplankton and relationship between size-fractionated phytoplankton and environmental factors in the Asan Bay. The contribution of large cells (microphytoplankton, $>20\;{\mu}m$) to total concentrations of chlorophyll $\alpha$ was higher than small cells (nanophytoplankton, $3\sim20\;{\mu}m$; picophytoplankton, $<3\;{\mu}m$) during the sampling period. Especially, large cells contributed 80% to the total chlorophyll a from February, 2004 to April 2004 when chlorophyll $\alpha$ concentrations were high. The size structure of phytoplankton shifted from micro-size class to nano-size class and picophytoplankton rapidly increased when phytoplankton biomass decreased in May 2004. Microphytoplankton exhibited a high biomass in the upper region during winter-spring season whereas nano- and picophytoplankton showed two peaks in the middle-lower regions (Station 3,5) during spring and summer. Microphytoplankton are most likely controlled by water temperature and nutrient supply during the cold season whereas nano- and picophytoplankton may be affected by stratification, light exposure during the warm season.

Seasonal Variations of Size-structured Phytoplankton in the Chunggye Bay (청계만 식물플랑크톤 크기구조의 계절적 변동)

  • Ji, Sung;Sin, Yong-Sik;Soh, Ho-Young
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.4
    • /
    • pp.333-341
    • /
    • 2008
  • Three embankments are located in the Chunggye Bay, each named as Changpo, Bokkil and Kuil and environmental changes are expected due to freshwater input. To investigate this phenomenon, three sample sites in front of each embankment gate were selected in Nov. 2006(autumn), Feb. 2007(winter), May. 2007(spring) and Aug. 2007(summer). At every point of embankment spot, large cells(micro-size, >$20\;{\mu}m$) of phytoplankton were turned out to be a major cause of algal bloom in Feb. 2007 and nano-size($2-20\;{\mu}m$) phytoplankton became dominant during rainy season. In rainy season, each point of embankment showed low salinity and transparency with higher ammonium and phosphorus concentrations than dry season. However, the number of phytoplankton has decreased and it is expected that freshwater influx has more influence on high turbidity and radical decrease of salinity than nutrient. According to the results of this study, therefore, nutrient could have more influence on growth of phytoplankton in dry season, but high turbidity and radical changes of salinity have more influence in rainy season.

Application of FITC-conjugated lectin probes for the recognition and differentiation of some Korean coastal red tide microalgae

  • Cho Eun Seob;Seo Gwi Moon;Lee Sam Geun;Kim Hak Gyoon;Lee Sang Jun;Rhodes Lesley L.;Hong Yong-Ki
    • Fisheries and Aquatic Sciences
    • /
    • v.1 no.2
    • /
    • pp.250-254
    • /
    • 1998
  • Harmful micro algae isolated from Korean coastal waters, were tested with FITC-conjugated lectins and observed by epifluorescent microscopy to distinguish each other. Strain-specific sugar composition at the cell surface was suggested by the affinity of lectins to different microalgae. The micro algae Cochlodinium polykrikoides (CP-1) and Gymnodinium $A_3\;(GA_{3-1}\;1)$, are morphologically similar, but exhibited different binding activity with the lectins ECA, HPA and WGA. In Peridiniales, the micro alga Alexandrium tamarense (AT) bound HPA and WGA, but Scrippsiella trochoidea (ST-1) did not bind those lectins. Three species of Prorocentrum also exhibited different binding specificity with HPA, PHA and SBA. A non­toxic Korean isolate of Heterosigma akashiwo (HA-2) bound ConA, PEA and UEA. These results suggest that lectins are useful in discriminating morphologically similar species, as well as different species or strains within the same genus.

  • PDF

Phytoplankton Diversity and Community Structure Driven by the Dynamics of the Changjiang Diluted Water Plume Extension around the Ieodo Ocean Research Station in the Summer of 2020 (2020년 하계 장강 저염수가 이어도 해양과학기지 주변 해역의 식물플랑크톤 다양성 및 개체수 변화에 미치는 영향)

  • Kim, Jihoon;Choi, Dong Han;Lee, Ha Eun;Jeong, Jin-Yong;Jeong, Jongmin;Noh, Jae Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.924-942
    • /
    • 2021
  • The expansion of the Changjiang Diluted Water (CDW) plume during summer is known to be a major factor influencing phytoplankton diversity, community structure, and the regional marine environment of the northern East China Sea (ECS). The discharge of the CDW plume was very high in the summer of 2020, and cruise surveys and stationary monitoring were conducted to understand the dynamics of changes in environmental characteristics and the impact on phytoplankton diversity and community structure. A cruise survey was conducted from August 16 to 17, 2020, using R/V Eardo, and a stay survey at the Ieodo Ocean Research Station (IORS) from August 15 to 21, 2020, to analyze phytoplankton diversity and community structure. The southwestern part of the survey area exhibited low salinity and high chlorophyll a fluorescence under the influence of the CDW plume, whereas the southeastern part of the survey area presented high salinity and low chlorophyll a fluorescence under the influence of the Tsushima Warm Current (TWC). The total chlorophyll a concentrations of surface water samples from 12 sampling stations indicated that nano-phytoplankton (20-3 ㎛) and micro-phytoplankton (> 20 ㎛) were the dominant groups during the survey period. Only stations strongly influenced by the TWC presented approximately 50% of the biomass contributed by pico-phytoplankton (< 3 ㎛). The size distribution of phytoplankton in the surface water samples is related to nutrient supplies, and areas where high nutrient (nitrate) supplies were provided by the CDW plume displayed higher biomass contribution by micro-phytoplankton groups. A total of 45 genera of nano- and micro-phytoplankton groups were classified using morphological analysis. Among them, the dominant taxa were the diatoms Guinardia flaccida and Nitzschia spp. and the dinoflagellates Gonyaulax monacantha, Noctiluca scintillans, Gymnodinium spirale, Heterocapsa spp., Prorocentrum micans, and Tripos furca. The sampling stations affected by the TWC and low in nitrate concentrations presented high concentrations of photosynthetic pico-eukaryotes (PPE) and photosynthetic pico-prokaryotes (PPP). Most sampling stations had phosphate-limited conditions. Higher Synechococcus concentrations were enumerated for the sampling stations influenced by low-nutrient water of the TWC using flow cytometry. The NGS analysis revealed 29 clades of Synechococcus among PPP, and 11 clades displayed a dominance rate of 1% or more at least once in one sample. Clade II was the dominant group in the surface water, whereas various clades (Clades I, IV, etc.) were found to be the next dominant groups in the SCM layers. The Prochlorococcus group, belonging to the PPP, observed in the warm water region, presented a high-light-adapted ecotype and did not appear in the northern part of the survey region. PPE analysis resulted in 163 operational taxonomic units (OTUs), indicating very high diversity. Among them, 11 major taxa showed dominant OTUs with more than 5% in at least one sample, while Amphidinium testudo was the dominant taxon in the surface water in the low-salinity region affected by the CDW plume, and the chlorophyta was dominant in the SCM layer. In the warm water region affected by the TWC, various groups of haptophytes were dominant. Observations from the IORS also presented similar results to the cruise survey results for biomass, size distribution, and diversity of phytoplankton. The results revealed the various dynamic responses of phytoplankton influenced by the CDW plume. By comparing the results from the IORS and research cruise studies, the study confirmed that the IORS is an important observational station to monitor the dynamic impact of the CDW plume. In future research, it is necessary to establish an effective use of IORS in preparation for changes in the ECS summer environment and ecosystem due to climate change.

Primary Productivity Measurement Using Carbon-14 and Nitrogenous Nutrient Dynamics in the Southeastern Sea of Korea (한국 동남해역의 해양기초생산력 (C$^{14}$ )과 질소계 영양염 동적 관계)

  • 심재형;박용철
    • 한국해양학회지
    • /
    • v.21 no.1
    • /
    • pp.13-24
    • /
    • 1986
  • The daily net primary production by phytoplankton in the southeastern sea of Korea in October 1985 ranged from 0.7 to 2.7 gCm$\^$-2/ d$\^$-1/ and averaged to be 1.3 gCm$\^$-2/ d$\^$-1/. Surface total chlorophyll ranged from 0.97 to 3.59mg chlm$\^$-3/. Primary production by nano-phytoplankton(〈20$\mu\textrm{m}$) ranged from 43 to 97% in the surface layer. Optimum light intensity(Iopt)was around 300 to 700${\mu}$Es$\^$-1/m$\^$-1/. Surface primary production from 9:00 to 15:00 h was evidently inhibited by strong light intensity beyond the Iopt. Phytoplankton near the base of euphotic zone(30-40m) showed extremely low Iopt suggesting adaptation to a low light environment. Since Iopt represents the history of light experience of phytoplankton at a given depth, the extent of variation in I of phytoplankton at different depth seems to be related to the in tensity of turbulence mixing in the surface mixed layer. From the present study, ammonium excretion by macrozooplankton (〉350$\mu\textrm{m}$) contributes from 3 to 19% of daily total nitrogen requirement by phytoplandton in this area. Calculation of upward flux of nitrate to the surface mixed layer from the lower layer, based on the simple diffusion model, approximates 3% of nitrogen requirement by phytoplankton. However, large portion of nitrogen requirement by phytoplankton remains unexplained in this area. In upwelling area near the coast, adjective flux might be the major source for the nitrogen requirement by phytoplankton. This study suggests that the major nitrogen source for the phytoplankton growth might come from the pelagic regeneration by nano-and micro-sized heterotrophic plandkon. Enhancement of primary production during the passage of the warm Tsushima Current is discussed in relation with nutrient dynamics and hydrlgraphic processes in this area.

  • PDF