• Title/Summary/Keyword: micro-emulsion

Search Result 78, Processing Time 0.025 seconds

The Optimum Condition of Anisotropic Bulk(10) Si Etching with KOH for High Selectivity and Low Surface Roughness

  • Lim, Hyung-Teak;Kim, Yong-Kweon;Lee, Seung-Ki
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.5
    • /
    • pp.108-113
    • /
    • 1997
  • In this paper, the optimum condition of (110) Si etching with the potassium hydroxide(KOH) etchant is presented. Although several researches on (110) Si anisotropic etching have been studied, there has been lack of effects of mask quality and etching conditions on the selectivity and the roughness o the etched surface. Three kinds of masks (film, emulsion and E-beam mask) were used in order to verify the effect of etching properties. Anisotropic bulk etching depends on the crystalline orientation and the concentration and temperature of the etchant. In order to investigate the effect of etching conditions on selectivity and the roughness of the etched surface, the concentration of the etchant was varied from 35 to 45 per cent in weight with increments by 5 per cent and the temperature was changed from 70 to 90$^{\circ}C$ with increments by 10$^{\circ}C$. The combination of the temperature of 70$^{\circ}C$ and the concentration of 40wt.% was found to be the optimum etching condition for high selectivity. Etched surfaces show minimum surfaces show minimum surface roughness at a temperature of 80$^{\circ}C$ and a concentation of 40wt.%. Comb structures with various comb widths were fabricated and the lengths of the combs wree measured with several etching time durations. A micro comb structure 525$\mu\textrm{m}$ high was fabricated for MEMS application.

  • PDF

Deactivation of Porous Photocatalytic Particles During a Wastewater Treatment Process

  • Cho, Young-Sang;Nam, Soyoung
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.185-197
    • /
    • 2019
  • Deactivation of porous photocatalytic materials was studied using three types of microstructured particles: macroporous titania particles, titania microspheres, and porous silica microspheres containing CNTs and $TiO_2$ nanoparticles. All particles were synthesized by emulsion-assisted self-assembly using micron-sized droplets as micro-reactors. During repeated cycles of the photocatalytic decomposition reaction, the non-dimensionalized initial rate constants (a) were estimated as a function of UV irradiation time (t) from experimental kinetics data, and the results were plotted for a regression according to the exponentially decaying equation, $a=a_0\;{\exp}(-k_dt)$. The retardation constant ($k_d$) was then compared for macroporous titania microparticles with different pore diameters to examine the effect of pore size on photocatalytic deactivation. Nonporous or larger macropores resulted in smaller values of the deactivation constant, indicating that the adsorption of organic materials during the photocatalytic decomposition reaction hinders the generation of active radicals from the titania surface. A similar approach was adopted to evaluate the activation constant of porous silica particles containing CNT and $TiO_2$ nanoparticles to compare the deactivation during recycling of the photocatalyst. As the amount of CNTs increased, the deactivation constant decreased, indicating that the conductive CNTs enhanced the generation of active radicals in the aqueous medium during photocatalytic oxidation.

Synthesis and Characterization of Sm2O3 Doped CeO2 Nanopowder by Reverse Micelle Processing (역마이셀을 이용한 Sm2O3 도핑 CeO2 나노분말의 합성 및 특성)

  • Kim, Jun-Seop;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.207-210
    • /
    • 2012
  • The preparation of $Sm_2O_3$ doped $CeO_2$ in Igepal CO-520/cyclohexane reverse micelle solutions has been studied. In the present work, we synthesized nanosized $Sm_2O_3$ doped $CeO_2$ powders by reverse micelle process using aqueous ammonia as the precipitant; hydroxide precursor was obtained from nitrate solutions dispersed in the nanosized aqueous domains of a micro emulsion consisting of cyclohexane as the oil phase, and poly (xoyethylene) nonylphenylether (Igepal CO-520) as the non-ionic surfactant. The synthesized and calcined powders were characterized by Thermogravimetry-differential thermal analysis (TGA-DTA), X-ray diffraction analysis (XRD), and Transmission electron microscopy (TEM). The crystallite size was found to increase with increase in water to surfactant (R) molar ratio. Average particle size and distribution of the synthesized $Sm_2O_3$ doped $CeO_2$ were below 10 nm and narrow, respectively. TG-DTA analysis shows that phase of $Sm_2O_3$ doped $CeO_2$ nanoparticles changed from monoclinic to tetragonal at approximately $560^{\circ}C$. The phase of the synthesized $Sm_2O_3$ doped $CeO_2$ with heating to $600^{\circ}C$ for 30 min was tetragonal $CeO_2$. This study revealed that the particle formation process in reverse micelles is based on a two step model. The rapid first step is the complete reduction of the metal to the zero valence state. The second step is growth, via reagent exchanges between micelles through the inter-micellar exchange.

Formulations of Itraconazole for Topical Skin Delivery (국소 피부 투여를 위한 이트라코나졸 제제의 조성)

  • Lee, Eun-A;Heo, Sung-Koun;Choi, Myeong-Jun;Chung, Suk-Jae;Shim, Chang-Koo;Kim, Dae-Duk
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.3
    • /
    • pp.167-171
    • /
    • 2007
  • Itraconazole is one of the most potent antifungal agents available in the market today. However, the low bioavailability due to its poor-water solubility calls for an alternative formulation to the current oral type. A topical itra-conazole-containing formulation may be of use for several reasons including the opportunity to reduce adverse events and generate high local tissue levels, more rapid drug delivery, and lower systemic exposure. The purpose of the present study was to investigate the vehicles for topical skin delivery of itraconazole. The effect of formulations on the hairless mouse skin permeation and deposition of itraconazole was determined using Franz diffusion cells at $37^{\circ}C$. Benzyl alcohol in micro-emulsion significantly increased the solubility of itraconazole, thereby increasing the skin permeation rate. However, lipo-some formulation showed the lowest solubility and permeation rate of itraconazole. Although the solubility of itraconazole in hydrogel formulation was lower than that in microemulsion, skin permeation rate was significantly higher probably due to its adhesive property. Therefore, microemulsion-based hydrogel formulation is expected to synergistically increase the skin permeation rate and skin deposition of itraconazole.

Influence of fuel injection pattern on combustion and emissions characteristics of diesel engine by using emulsified fuel applied with EGR system (에멀젼연료와 EGR의 동시적용 디젤엔진에 있어서 연료 분사 패턴이 연소와 배기가스에 미치는 영향)

  • Yoo, Dong-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1064-1069
    • /
    • 2014
  • The use of emulsified fuel and EGR (Exhaust gas recirculation) system are effective methods to reduce NOx emission from diesel engines. In general, it is considered that EGR method influences diesel engine combustion in three different ways: thermal, chemical and dilution effect. Among others, the thermal effect is related to the increase of specific heat capacity due to the presence of $CO_2$ and $H_2O$ in inlet air. Meanwhile, emulsified fuel method of utilizing latent heat of vaporization and miro-explosion has been recognized as an effective technique for reducing diesel engine emissions. In this paper, an author studied on combustion and emission characteristics by using emulsified fuel (EF, Light oil : 80% + Water : 20%) and EGR (30% EGR ratio) system. And the effect of fuel injection pattern control was investigated.

Synthesis of SiC Nanoparticles by a Sol-Gel Process (나노 실리카와 카본블랙이용 탄화열 반응으로 나노 SiC 합성 및 특성)

  • Jeong, Kwang-Jin;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.246-249
    • /
    • 2013
  • Nano-sized ${\beta}$-SiC nanoparticles were synthesized combined with a sol-gel process and a carbothermal process. TEOS and carbon black were used as starting materials for the silicon source and carbon source, respectively. $SiO_2$ nanoparticles were synthesized using a sol-gel technique (Stober process) combined with hydrolysis and condensation. The size of the particles could be controlled by manipulating the relative rates of the hydrolysis and condensation reactions of tetraethyl orthosilicate (TEOS) within the micro-emulsion. The average particle size and morphology of synthesized silicon dioxide was about 100nm and spherical, respectively. The average particles size and morphology of the used carbon black powders was about 20nm and spherical, respectively. The molar ratio of silicon dioxide and carbon black was fixed to 1:3 in the preparation of each combination. $SiO_2$ and carbon black powders were mixed in ethanol and ball-milled for 12 h. After mixing, the slurries were dried at $80^{\circ}C$ in an oven. The dried powder mixtures were placed in alumina crucibles and synthesized in a tube furnace at $1400{\sim}1500^{\circ}C$ for 4 h with a heating rate of $10^{\circ}C$/min under flowing Ar gas (160 cc/min) and furnace cooling down to room temperature. SiC nanoparticles were characterized by XRD, TEM, and SAED. The XRD results showed that high purity beta silicon carbide with excellent crystallinity was synthesized. TEM revealed that the powders are spherical shape nanoparticles with diameters ranging from 15 to 30 nm with a narrow distribution.

Preparation and Evaluation of Meloxicam-loaded Poly(D,L-lactic acid) Microspheres (멜록시캄 함유 poly (D,L-lactic acid) 미소립자의 제조 및 평가)

  • Im, Jong-Seob;Oh, Dong-Hoon;Li, Dong-Xun;Sung, Jung-Hoon;Yoo, Bong-Kyu;Kim, Jung-Ae;Woo, Jong-Soo;Lee, Yong-Bok;Kim, Se-Mi;Choi, Han-Gon;Yong, Chul-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.1
    • /
    • pp.63-72
    • /
    • 2008
  • Meloxicam-loaded microspheres were prepared with poly(D,L-lactic acid)(PLA) by a solvent-emulsion evaporation method. The morphology, particle size, drug loading capacity, drug entrapment efficiency (EE) and release patterns of drug were investigated in vitro. Various batches of micro spheres with different size and drug content were obtained by changing the ratio of meloxicam to $PLA^{\circ}{\AE}s$ with different molecular weight, PLA concentration in the dispersed phase and stirring rate. Meloxicam crystals on microsphere surface, which were released rapidly and could act as a loading dose, were observed with increasing drug content. The release rate was increased with increase in drug contents and decrease in the molecular weight of PLA. Microspheres prepared with smaller molecular weight produced faster drug release rate. The release rate of meloxicam for long-acting injectable delivery system in vitro, which would aid in predicting in vivo release profile, could be controlled by properly optimizing various factors affecting characteristics of microspheres. Blood concentration-time profile of meloxicam after intramuscular injection of meloxicam-loaded microspheres in rabbits showed possibility of long term application of this system in clinical settings.

Preparations and Release Property of Poly(ε-caprolacton)/ethyl cellulose Microcapsule Containing Pluronic F127 (Pluronic F127을 함유하는 Poly(ε-caprolacton)/ethyl cellulose 마이크로 캡슐의 제조 및 방출 특성)

  • Hong, Yeon Ji;Kim, Jin-Chul
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.632-637
    • /
    • 2009
  • Poly(${\varepsilon}-caprolacton$)/ethyl cellulose (PCL/EC) microcapsules containing pluronic F127 were prepared by a spray drying method. The aqueous phase, 20% of pluronic F127 was dissolved in distilled water, and the organic phase, 5% of PCL and EC were dissolved in dichloromethane. The microcapsules were obtained by spray drying the water-in-oil (W/O) emulsion. According to the data of scanning electron microscopy and particle analyzer, tens of micro size microcapsules were observed. On a differential scanning calorimeter, the phase transition temperatures of microcapsules were observed and they were found around those of pluronic F127 and poly(${\varepsilon}-caprolacton$), which were the main components of the microcapsules. At the range of $30{\sim}45^{\circ}C$, temperature-dependent release properties were investigated using fluorescein isothicyanate-dextran (FITC-dextran) and blue dextran as a model drug. When the temperature was increased, the degree of release of microcapsule was also increased. FITC-dextran, the relative low molecular weight, was more released than blue-dextran.

Preparation and Characterization of Nano-sized Hydrogels (nanogels) Using Inverse-miniemulsion Polymerization Method for Protein Drug Delivery (단백질 약물 전달을 위한 Inverse-miniemulsion Polymerization 방법으로 제조하는 나노크기의 수화젤(나노젤)의 제조 및 특성평가)

  • Kang, Soo-Yong;Munkhjargal, Odonchimeg;Kim, Seong-Cheol;Park, Ah-Reum;Shim, Young-Key;Lee, Woo-Kyoung
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.2
    • /
    • pp.73-78
    • /
    • 2010
  • Hydrogels are thought to be a promising delivery carrier for protein drugs because of their favorable aqueous environment compared with nano/micro-particles of hydrophobic polymer such as PLGA. In this study, nano-sized hydrogels (nanogels) were fabricated using inverse-miniemulsion polymerization method. The mean size of nanogels in range of 90-160nm and affected by the preparation parameters such as sonication time and concentration of monomer. While longer sonication time and lower concentration of acrylamide monomer showed a tendency to produce smaller nanogels and to have lower lysozyme activity, variation of bis-methylene acrylamide concentration made no difference. Although both longer soncaton time and lower acrylamide concentration increased in vitro release rate, acrylamide concentration was more effectively affected to the control of protein release rate, which indicated that the release rate of protein from nanogels affected by not only their size but also internal structure. In conclusion, nanogels prepared by inverse-miniemulsion can be a useful carrier for application of protein drug, because of simple process, minimum contact of organic solvent and high protein activity.

Photoluminescence of Y3(Al, Ga)5O12:Ce3+ Nanoparticles by a Reverse Micelle Process

  • Kim, Min Yeong;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.31-34
    • /
    • 2013
  • Trivalent cerium-ion-doped $Y_3(Al,\;Ga)_5O_{12}$ nanoparticle phosphor nanoparticles were synthesized using the reverse micelle process. The Ce doped $Y_3(Al,\;Ga)_5O_{12}$ particles were obtained from nitrate solutions dispersed in the nanosized aqueous domains of a micro emulsion consisting of cyclohexane as the oil phase and poly(oxyethylene) nonylphenyl ether (Igepal CO-520) as the non-ionic surfactant. The crystallinity, morphology, and thermal properties of the synthesized $Y_3(Al,\;Ga)_5O_{12}:Ce^{3+}$ powders were characterized by thermogravimetry-differential thermal analysis (TGA-DTA), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and transmission electron microscopy. The crystallinity, morphology, and chemical states of the ions were characterized; the photo-physical properties were studied by taking absorption, excitation, and emission spectra for various concentrations of cerium. The photo physical properties of the synthesized $Y_3(Al,\;Ga)_5O_{12}:Ce^{3+}$ powders were studied by taking the excitation and emission spectra for various concentrations of cerium. The average particle size of the synthesized YAG powders was below $1{\mu}m$. Excitation spectra of the $Y_3Al_5O_{12}$ and $Y_3Al_{3.97}Ga_{1.03}O_{12}$ samples were 485 nm and 475 nm, respectively. The emission spectra of the $Y_3Al_5O_{12}$ and $Y_3Al_{3.97}Ga_{1.03}O_{12}$ were around 560 nm and 545 nm, respectively. $Y_3(Al,\;Ga)_5O_{12}:Ce^{3+}$ is a red-emitting phosphor; it has a high efficiency for operation under near UV excitation, and may be a promising candidate for photonic applications.