• Title/Summary/Keyword: micro-cracks

Search Result 386, Processing Time 0.021 seconds

Analysis of Micro-Sedimentary Structure Characteristics Using Ultra-High Resolution UAV Imagery: Hwangdo Tidal Flat, South Korea (초고해상도 무인항공기 영상을 이용한 한국 황도 갯벌의 미세 퇴적 구조 특성 분석)

  • Minju Kim;Won-Kyung Baek;Hoi Soo Jung;Joo-Hyung Ryu
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.3
    • /
    • pp.295-305
    • /
    • 2024
  • This study aims to analyze the micro-sedimentary structures of the Hwangdo tidal flats using ultra-high resolution unmanned aerial vehicle (UAV) data. Tidal flats, located in the transitional area between land and sea, constantly change due to tidal activities and provide a unique environment important for understanding sedimentary processes and environmental conditions. Traditional field observation methods are limited in spatial and temporal coverage, and existing satellite imagery does not provide sufficient resolution to study micro-sedimentary structures. To overcome these limitations, high-resolution images of the Hwangdo tidal flats in Chungcheongnam-do were acquired using UAVs. This area has experienced significant changes in its sedimentary environment due to coastal development projects such as sea wall construction. From May 17 to 18, 2022, sediment samples were collected from 91 points during field surveys and 25 in-situ points were intensively analyzed. UAV data with a spatial resolution of approximately 0.9 mm allowed identifying and extracting parameters related to micro-sedimentary structures. For mud cracks, the length of the major axis of the polygons was extracted, and the wavelength and ripple symmetry index were extracted for ripple marks. The results of the study showed that in areas with mud content above 80%, mud cracks formed at an average major axis length of 37.3 cm. In regions with sand content above 60%, ripples with an average wavelength of 8 cm and a ripple symmetry index of 2.0 were formed. This study demonstrated that micro-sedimentary structures of tidal flats can be effectively analyzed using ultra-high resolution UAV data without field surveys. This highlights the potential of UAV technology as an important tool in environmental monitoring and coastal management and shows its usefulness in the study of sedimentary structures. In addition, the results of this study are expected to serve as baseline data for more accurate sedimentary facies classification.

Polygonal Grain-Based Distinct Element Modelling of Mechanical Characteristics and Transverse Isotropy of Rock (다각형 입자 기반 개별요소모델을 통한 암석의 역학적 특성과 횡등방성 모사)

  • Park, Jung-Wook;Park, Chan;Ryu, Dongwoo;Choi, Byung-Hee;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.26 no.3
    • /
    • pp.235-252
    • /
    • 2016
  • This study presents a methodology to reproduce the mechanical behavior of isotropic or transversely isotropic rock using the polygonal grain-based distinct element model. A numerical technique to monitor the evolution of micro-cracks during the simulation was developed in the present study, which enabled us to examine the contribution of tensile cracking and shear cracking to the progressive process of the failure. The numerical results demonstrated good agreement with general observations from rock specimens in terms of the behavior and the evolution of micro-cracks, suggesting the capability of the model to represent the mechanical behavior of rock. We also carried out a parametric study as a fundamental work to examine the relationships between the microscopic properties of the constituents and the macroscopic behavior of the model. Depending on the micro-properties, the model exhibited a variety of responses to the external load in terms of the strength and deformation characteristics. In addition, a numerical technique to reproduce the transversely isotropic rock was suggested and applied to Asan gneiss from Korea. The behavior of the numerical model was in good agreement with the results obtained in the laboratory-scale experiments of the rock.

Characteristics of Recycled Wafer for Solar Cell According to DRE Process (DRE 공정이 태양전지용 재생웨이퍼 특성에 미치는 영향)

  • Jung, D.G.;Kong, D.Y.;Yun, S.H.;Seo, C.T.;Lee, Y.H.;Cho, C.S.;Kim, B.H.;Bae, Y.H.;Lee, J.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.3
    • /
    • pp.217-224
    • /
    • 2011
  • of materials and simplification of process. Micro-blasting is one of the promising method for recycling of waste wafer due to their simple and low cost process. Therefore, in this paper, we make recycling wafer through the micro-blaster. A surface etched by micro-blaster forms particles, cracks and pyramid structure. A pyramid structure formed by micro-blaster has a advantage of reflectivity decrease. However, lifetime of minority carrier is decreased by particles and cracks. In order to solve this problems, we carried out the DRE(Damage Romove Etching). There are two ways to DRE process ; wet etching, dry etching. After the DRE process, we measured reflectivity and lifetime of minority carrier. Through these results, we confirmed that a wafer recycled can be used in solar cell.

Examination for Controlling Chloride Penetration of Concrete through Micro-Cracks with Surface Treatment System (표면도장공법을 적용한 미세균열 콘크리트의 염소이온 침투 제어 특성)

  • Yoon, In-Seok;Chae, Gyu-Bong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.729-735
    • /
    • 2008
  • For well-constructed concrete, its service life is a long period and it has an enough durability performance. For cracked concrete, however, it is clear that cracks should be a preferential channel for the penetration of aggressive substance such as chloride ions accoding to author's previous researches. Even though crack width can be reduced due to the high reinforcement ratio, the question is to which extend these cracks may jeopardize the durability of cracked concrete. If the size of crack is small, surface treatment system can be considered as one of the best options to extend the service life of concrete structures exposed to marine environment simply in terms of cost effectiveness versus durability performance. Thus, it should be decided to undertake an experimental study to deal with the effect of different types of surface treatment system, which are expected to seal the concrete and the cracks to chloride-induced corrosion in particular. In this study, it is examined the effect of surfaced treated systems such as penetrant, coating, and their combination on chloride penetration through microcracks. Experimental results showed that penetrant can't cure cracks. However, coating and combined treatment can prohibit chloride penetration through cracks upto 0.06 mm, 0.08 mm, respectively.

Tensile Properties of Hybrid Fiber Reinforced Cement Composite according to the Hooked & Smooth Steel Fiber Blending Ratio and Strain Rate (후크형 및 스무스형 강섬유의 혼합 비율과 변형속도에 따른 하이브리드 섬유보강 시멘트복합체의 인장특성)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Sang-Kyu;Kim, Hong-Seop;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.31-39
    • /
    • 2021
  • In this study, the fiber blending ratio and strain rate effect on the tensile properties synergy effect of hybrid fiber reinforced cement composite was evaluated. Hooked steel fiber(HSF) and smooth steel fiber(SSF) were used for reinforcing fiber. The fiber blending ratio of HSF+SSF were 1.5+0.5, 1.0+1.0 and 0.5+1.5vol.%. As a results, in the cement composite(HSF2.0) reinforced with HSF, as the strain rate increases, the tensile stress sharply decreased after the peak stress because of the decrease in the number of straightened pull-out fibers by increase of micro cracks in the matrix around HSF. When 0.5 vol.% of SSF was mixed, the micro cracks was effectively controlled at the static rate, but it was not effective in controlling micro cracks and improving the pull-out resistance of HSF at the high rate. On the other hand, the specimen(HSF1.0SSF1.0) in which 1.0vol.% HSF and 1.0vol.% SSF were mixed, each fibers controls against micro and macro cracks, and SSF improves the pull-out resistance of HSF effectively. Thus, the fiber blending effect of the strain capacity and energy absorption capacity was significantly increased at the high rate, and it showed the highest dynamic increase factor of the tensile strength, strain capacity and peak toughness. On the other hand, the incorporation of 1.5 vol.% SSF increases the number of fibers in the matrix and improves the pull-out resistance of HSF, resulting in the highest fiber blending effect of tensile strength and softening toughness. But as a low volume fraction of HSF which controlling macro crack, it was not effective for synergy of strain capacity and peak toughness.

Study on mechanism of macro failure and micro fracture of local nearly horizontal stratum in super-large section and deep buried tunnel

  • Li, Shu-cai;Wang, Jian-hua;Chen, Wei-zhong;Li, Li-ping;Zhang, Qian-qing;He, Peng
    • Geomechanics and Engineering
    • /
    • v.11 no.2
    • /
    • pp.253-267
    • /
    • 2016
  • The stability of surrounding rock will be poor when the tunnel is excavated through nearly horizontal stratum. In this paper, the instability mechanism of local nearly horizontal stratum in super-large section and deep buried tunnel is revealed by the analysis of the macro failure and micro fracture. A structural model is proposed to explain the mechanics of surrounding rock collapse under the action of stress redistribution and shed light on the macroscopic analytical approach of the stability of surrounding rock. Then, some highly effective formulas applied in the tunnel engineering are developed according to the theory of mixed-mode micro fracture. And well-documented field case is made to demonstrate the effectiveness and accuracy of the proposed analytical methods of mixed-mode fracture. Meanwhile, in order to make the more accurate judgment about yield failure of rock mass, a series of comprehensive failure criteria are formed. In addition, the relationship between the nonlinear failure criterion and $K_I$ and $K_{II}$ of micro fracture is established to make the surrounding rock failure criterion more comprehensive and accurate. Further, the influence of the parameters related to the tension-shear mixed-mode fracture and compression-shear mixed-mode fracture on the propagation of rock crack is analyzed. Results show that ${\sigma}_3$ changes linearly with the change of ${\sigma}_1$. And the change rate is related to ${\beta}$, angle between the cracks and ${\sigma}_1$. The proposed simple analytical approach is economical and efficient, and suitable for the analysis of local nearly horizontal stratum in super-large section and deep buried tunnel.

Evaluation of Remediation Efficiency of In-Situ Chemical Oxidation Technology Applying Micro Bubble Ozone Oxidizer Coupled with Pneumatic Fracturing Equipment (마이크로버블 오존 산화제와 공압파쇄 장치를 연계 적용한 지중 화학적 산화법의 정화효율 평가)

  • Oh, Seung-Taek;Oh, Cham-Teut;Kim, Guk-Jin;Seok, So-Hee;Kim, Chul-Kyung;Lim, Jin-Hwan;Ryu, Jae-Bong;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.4
    • /
    • pp.44-50
    • /
    • 2012
  • A new type of chemical oxidation technology utilizing micro bubble ozone oxidizer and a pneumatic fracturing equipment was developed to enhance field applicability of a traditional chemical oxidation technology using hydrogen peroxide as an oxidizer for in-situ soil remediation. To find an efficient way to dissolve gaseous ozone into hydrogen peroxide, ozone was injected into water as micro bubble form then dissolved ozone concentration and its duration time were measured compared to those of simple aeration of gaseous ozone. As a result, dissolved ozone concentration in water increased by 31% (1.6 ppm ${\rightarrow}$ 2.1 ppm) and elapsed time for which maximum ozone concentration decreased by half lengthened from 9 min to 33 min. When the developed pneumatic fracturing technology was applied in sandy loam, cracks were developed and grown in soil for 5~30 seconds so that the radius of influence got longer by 71% from 392 cm to 671 cm. The remediation system using the micro bubble ozone oxidizer and the pneumatic fracturing equipment for field application was made and demonstrated its remediation efficiency at petroleum contaminated site. The system showed enhanced remediation capacity than the traditional chemical oxidation technology using hydrogen peroxide with reduced remediation time by about 33%.

Correlation Between Flexural Toughness and Cracking Characteristics of Micro-fiber Reinforced Mortar According to Fiber Contents (마이크로 섬유보강 모르타르의 휨 인성과 균열 특성의 상관관계)

  • Shin, Kyung-Joon;Jang, Kyu-Hyou;Kim, Eui Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.249-257
    • /
    • 2008
  • Various methods have been used to reinforce the cementitious material such as mortar and concrete that have weak tensile strength. Major reinforcing method is to mix matrix with fibers which have strong tensile strength. Recently, micro-fiber reinforced mortar has been studied which removes coarse aggregate and uses micro-fiber with small diameter in order to homogenize the matrix properties and maximize the performance of fiber. Performance of micro-fiber reinforced mortar showing multiple cracking behavior is hardly represented only by the flexural toughness. Therefore, This paper reports the cracking behavior as well as mechanical behavior for various mixtures which have different fiber type and mixture proportions to find the proper parameter representing the cracking characteristic. Correlations between flexural toughness and various cracking characteristics such as cracking area, width and number are explored. As a result, it is found that flexural toughness, volume of fiber and number of cracks are suitable for representing the characteristics of micro-fiber reinforced mortar.

Field Performance Evaluation of Micro-surfacing Method and Polymer Slurry Seal Method Used in National Highway (일반국도에 적용한 마이크로서페이싱공법과 폴리머슬러리실공법에 대한 현장 공용성 평가)

  • Son, Hyeon Jang;Kim, Yong Joo;Baek, Jong Eun;Lim, Jae Kyu;Kim, Boo Il
    • International Journal of Highway Engineering
    • /
    • v.17 no.1
    • /
    • pp.17-24
    • /
    • 2015
  • PURPOSES : Recently, crack, rutting, and stripping problems from the surface of asphalt pavements in National highway are observed and they affect the drivers to feel uncomfortable on the road. Surface treatments are recommended to use in distressed pavements due to cost-effective, and improvement of surface performance. The purpose of this study is to evaluate the performance of micro-surfacing and polymer slurry seal treatments for distressed asphalt pavements. METHODS : Surface conditions and friction resistance are evaluated for asphalt pavements treated with micro-surfacing and polymer slurry seal mixes in National highway 30 line and 34 line. Visual observation is conducted and surface performance is measured by PES (Performance Evaluation Surveyor) in terms of crack ratio, rutting and IRI(International Roughness Index). BPN(British Pendulum Number) is measured by BPT(British Pendulum Tester) to evaluate the friction resistance in the field. RESULTS : The surface evaluation results are presented for asphalt pavement treated with micro-surfacing and polymer slurry seal treatments in National highway 30 line and 34 line. Based on the visual observation, micro-surfacing and polymer slurry seal treatments show better improvements in terms of cracks and stripping. Based on the surface conditions measured by PES vehicle, the surface performance of micro-surfacing treatments improves from 53.3% to 54.2% and the surface performance of polymer slurry seal treatments improves from 21.6% to 59.7%. However, the friction resistance of both micro-surfacing and polymer slurry seal treatments decreases from 2.5% to 6.7%. Further, it should be verified to produce the surface exposed with aggregates during the construction process of both treatment methods in the field. CONCLUSIONS : Based on the performance evaluation results in the filed, the surface performance of asphalt pavement treated with micro-surfacing and polymer slurry seal treatments improves from 21.6% to 59.7%. While, the friction resistance of asphalt pavement treated with micro-surfacing and polymer slurry seal treatments does not improve. It can be concluded that current micro-surfacing and polymer slurry seal treatments would improve surface performance but would not improve the friction resistance.

Tribological Behavior of Boundary Lubricated Sliding Surfaces Using Three Different Spacing of Surface Profiles

  • Oh, Se-Doo;Lee, Young-Ze
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1428-1434
    • /
    • 2002
  • The ball-on-disk type sliding tests with boundary lubricated steels were carried out to verify the effect of initial spacing in surface profiles on wear and scuffing. Three kinds of surface spacing, which are closely related with initial surface micro-cracks on sliding surfaces, were produced on AISI 1045 steel surfaces using different grinding and polishing processes. Frictional forces and time to scuffing were measured, and the shape and amount of wear particles were analyzed to compare the with original surface profiles. From the tests, it was confirmed that the size of wear particles are related closely to the original spacing of the surface profile. The time to failure and amount of wear were sensitive to the surface spacing. The wider surface spacing shows much longer sliding life and smaller amount of wear than the others. Time to scuffing was increased with increasing surface pro(lie spacing. The size of wear particles increased while the wear and wear rate K were decreased with an increase in surface spacing. After the sliding tests, surface cracks of inner parts of the wear track formed due to scuffing were observed and compared among the specimens having the different surface spacing.