• Title/Summary/Keyword: micro-component

Search Result 395, Processing Time 0.022 seconds

Machine Learning-based Phase Picking Algorithm of P and S Waves for Distributed Acoustic Sensing Data (분포형 광섬유 센서 자료 적용을 위한 기계학습 기반 P, S파 위상 발췌 알고리즘 개발)

  • Yonggyu, Choi;Youngseok, Song;Soon Jee, Seol;Joongmoo, Byun
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.177-188
    • /
    • 2022
  • Recently, the application of distributed acoustic sensors (DAS), which can replace geophones and seismometers, has significantly increased along with interest in micro-seismic monitoring technique, which is one of the CO2 storage monitoring techniques. A significant amount of temporally and spatially continuous data is recorded in a DAS monitoring system, thereby necessitating fast and accurate data processing techniques. Because event detection and seismic phase picking are the most basic data processing techniques, they should be performed on all data. In this study, a machine learning-based P, S wave phase picking algorithm was developed to compensate for the limitations of conventional phase picking algorithms, and it was modified using a transfer learning technique for the application of DAS data consisting of a single component with a low signal-to-noise ratio. Our model was constructed by modifying the convolution-based EQTransformer, which performs well in phase picking, to the ResUNet structure. Not only the global earthquake dataset, STEAD but also the augmented dataset was used as training datasets to enhance the prediction performance on the unseen characteristics of the target dataset. The performance of the developed algorithm was verified using K-net and KiK-net data with characteristics different from the training data. Additionally, after modifying the trained model to suit DAS data using the transfer learning technique, the performance was verified by applying it to the DAS field data measured in the Pohang Janggi basin.

Analysis of Mineral and Volatile Flavor Compounds in Pimpinella brachycarpa N. by ICP-AES and SDE, HS-SPME-GC/MS (ICP-AES와 SDE, HS-SPME-GC/MS를 이용한 참나물의 무기성분과 향기성분)

  • Chang, Kyung-Mi;Chung, Mi-Sook;Kim, Mi-Kyung;Kim, Gun-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.22 no.2
    • /
    • pp.246-253
    • /
    • 2007
  • Mineral and volatile flavor compounds of Pimpinella brochycarpa N., a perennial Korean medicinal plant of the Umbelliferae family, were analyzed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and simultaneous steam distillation extract (SDE)-gas chromatography mass spectrometry (GC/MS), head space solid phase micro-extraction (HS-SPME)-GC/MS. Mineral contents of the stalks and leaves were compared and the flavor patterns of the fresh and the shady air-dried samples were obtained by the electronic nose (EN) with 6 metal oxide sensors. Principal component analysis (PCA) was carried out using the data obtained from EN. The 1st principal values of the fresh samples have + values and the shady air-dried have - values. The essential oil extracted from the fresh and the shady air-dried by SDE method contain 58 and 31 flavor compounds. When HS-SPME method with CAR/PDMS fiber and PDMS fiber were used, 34 and 21 flavor compounds. The principal volatile components of Pimpinella brachycarpa N. were ${\alpha}$-selinene, germacrene D, and myrcene.

Changes in Explanatory Levels of Elementary Pre-service Teachers through a Scientific Explanation Construction Tool and Exploration of Its Affordances (과학적 설명 구성 도구를 통한 초등 예비교사의 설명 수준 변화와 도구의 어포던스 탐색)

  • Kim, Jong-Uk;Lim, Sung-Eun
    • Journal of Korean Elementary Science Education
    • /
    • v.42 no.4
    • /
    • pp.497-512
    • /
    • 2023
  • While scientific explanation is a fundamental component of science, teachers often lack familiarity with the formal structure of scientific explanations and the criteria for assessing their quality. Consequently, this study aims to clarify the concept of scientific explanation and proposes a tool for constructing scientific explanations. The primary objective is to explore the tool's impact on enhancing the explanatory skills of pre-service teachers when it comes to the phenomenon of condensation. The research findings indicate that many pre-service teachers initially operated at a description level during the pre-test. However, the implementation of the tool enabled them to advance their explanatory skills beyond the associative level. Notably, the tool was analyzed for its ability to provide pre-service teachers with a conceptual framework for explaining phenomena and guiding logical explanations and micro-level interpretations. This study holds significance in demonstrating that pre-service teachers can comprehend the formalities and criteria of scientific explanations and apply them to enhance their own explanatory abilities. Moving forward, efforts should be made to enhance the scientific explanation level among pre-service teachers across various topics and subject areas. Furthermore, pre-service teachers need classroom experiences that foster the construction of scientific explanations in authentic contexts.

Recent Progress in Micro In-Mold Process Technologies and Their Applications (마이크로 인몰드 공정기술 기반 전자소자 제조 및 응용)

  • Sung Hyun Kim;Young Woo Kwon;Suck Won Hong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.1-12
    • /
    • 2023
  • In the current era of the global mobile smart device revolution, electronic devices are required in all spaces that people interact with. The establishment of the internet of things (IoT) among smart devices has been recognized as a crucial objective to advance towards creating a comfortable and sustainable future society. In-mold electronic (IME) processes have gained significant industrial significance due to their ability to utilize conventional high-volume methods, which involve printing functional inks on 2D substrates, thermoforming them into 3D shapes, and injection-molded, manufacturing low-cost, lightweight, and functional components or devices. In this article, we provide an overview of IME and its latest advances in application. We review biomimetic nanomaterials for constructing self-supporting biosensor electronic materials on the body, energy storage devices, self-powered devices, and bio-monitoring technology from the perspective of in-mold electronic devices. We anticipate that IME device technology will play a critical role in establishing a human-machine interface (HMI) by converging with the rapidly growing flexible printed electronics technology, which is an integral component of the fourth industrial revolution.

Study on the Methodology of the Microbial Risk Assessment in Food (식품중 미생물 위해성평가 방법론 연구)

  • 이효민;최시내;윤은경;한지연;김창민;김길생
    • Journal of Food Hygiene and Safety
    • /
    • v.14 no.4
    • /
    • pp.319-326
    • /
    • 1999
  • Recently, it is continuously rising to concern about the health risk being induced by microorganisms in food such as Escherichia coli O157:H7 and Listeria monocytogenes. Various organizations and regulatory agencies including U.S.FPA, U.S.DA and FAO/WHO are preparing the methodology building to apply microbial quantitative risk assessment to risk-based food safety program. Microbial risks are primarily the result of single exposure and its health impacts are immediate and serious. Therefore, the methodology of risk assessment differs from that of chemical risk assessment. Microbial quantitative risk assessment consists of tow steps; hazard identification, exposure assessment, dose-response assessment and risk characterization. Hazard identification is accomplished by observing and defining the types of adverse health effects in humans associated with exposure to foodborne agents. Epidemiological evidence which links the various disease with the particular exposure route is an important component of this identification. Exposure assessment includes the quantification of microbial exposure regarding the dynamics of microbial growth in food processing, transport, packaging and specific time-temperature conditions at various points from animal production to consumption. Dose-response assessment is the process characterizing dose-response correlation between microbial exposure and disease incidence. Unlike chemical carcinogens, the dose-response assessment for microbial pathogens has not focused on animal models for extrapolation to humans. Risk characterization links the exposure assessment and dose-response assessment and involve uncertainty analysis. The methodology of microbial dose-response assessment is classified as nonthreshold and thresh-old approach. The nonthreshold model have assumption that one organism is capable of producing an infection if it arrives at an appropriate site and organism have independence. Recently, the Exponential, Beta-poission, Gompertz, and Gamma-weibull models are using as nonthreshold model. The Log-normal and Log-logistic models are using as threshold model. The threshold has the assumption that a toxicant is produce by interaction of organisms. In this study, it was reviewed detailed process including risk value using model parameter and microbial exposure dose. Also this study suggested model application methodology in field of exposure assessment using assumed food microbial data(NaCl, water activity, temperature, pH, etc.) and the commercially used Food MicroModel. We recognized that human volunteer data to the healthy man are preferred rather than epidemiological data fur obtaining exact dose-response data. But, the foreign agencies are studying the characterization of correlation between human and animal. For the comparison of differences to the population sensitivity: it must be executed domestic study such as the establishment of dose-response data to the Korean volunteer by each microbial and microbial exposure assessment in food.

  • PDF

Comparison of the Plant Characteristics and Nutritional Components between GM and Non-GM Chinese Cabbages Grown in the Central and Northern Parts of Korea (중·북부지역에서 재배된 GM 배추와 Non-GM 배추간의 식물체 특성 및 영양 성분 비교 분석)

  • Cho, Dong-Wook;Oh, Jin-Pyo;Park, Kuen-Woo;Lee, Dong-Jin;Chung, Kyu-Hwan
    • Horticultural Science & Technology
    • /
    • v.28 no.5
    • /
    • pp.836-844
    • /
    • 2010
  • This study was carried out to investigate plant characteristics and nutritional components of the genetically modified (GM) Chinese cabbage and its control line grown in the central and northern parts of Korea in order to establish the evaluating protocol and standard assessment. The GM and non-GM Chinese cabbage was planted with normal and concentrated density at two locations in spring and fall of 2008 and 2009. From the statistic analysis on plant characteristics and nutritional components, there were not many significant differences between GM and non-GM Chinese cabbage. Only few differences in the plant characteristics were found between the dense and normal planting. In the dense planting, there was no significant difference between GM and non-GM Chinese cabbages except for three out of 18 plant traits, such as leaf shape, hairiness and midrib length. On the other hand, nine plant traits including leaf length, leaf width, leaf color, leaf shape, fresh weigh of ground part, number of leaf, midrib length, midrib width and root diameter were slightly different between GM and non-GM Chinese cabbage in the normal planting. In case of leaf length, midrib length, midrib width and fresh weigh of ground part, there were significantly differences not only between two lines, but also between two locations. From nutritional component analysis, only five fatty acids were identified in the Chinese cabbage: palmitic acid, oleic acid, stearic acid, linoleic acid and linolenic acid. Except linoleic acid, four fatty acids in one gram of dried sample from GM line were little higher than those from non-GM line. However, there were no significant differences in total contents of fatty acids not only between GM and non-GM Chinese cabbage line, but also between northern and central cultivating areas in the normal and dense planting. According to the composition of inorganic elements identified in the samples from both lines, there were six macro-elements, such as N, P, Ca, K, Mg and Na, and four micro-elements, Cu, Fe, Mn and Zn. Based on the result from PCA analysis, specific clusters were not found between GM Chinese cabbage and the control line, but found between two regions.

Analysis of Characterization in Commercial Extra Virgin Olive Oils (유통 압착올리브유의 이화학적인 특성)

  • Nam, Ha-Young;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.7
    • /
    • pp.866-873
    • /
    • 2007
  • To analyze and differentiate volatile compounds of 13 extra virgin olive oils from market, solid-phase micro extraction (SPME) GC-MS and electronic nose (EN) equipped with metal oxide sensors were applied. The volatiles identified in extra virgin olive oils include hexanal, 4-hexen-1-ol, (Z)-3-hexen-1-ol, acetic acid, and 2,4-dimethyl-heptane, etc. Response from EN was analysed by the principal component analysis. Proportion of the first Principal component was 99.70%, suggesting that each aroma pattern of the 13 extra virgin olive oils could be discriminated by EN. Fatty acid compositions were oleic (61.1${\sim}$77.9 mole%), palmitic (11.7${\sim}$16.5 mole%), linoleic (4.7${\sim}$9.7 mole%), stearic (2.5${\sim}$2.9 mole%), Palmitoleic (0.8${\sim}$2.4 mole%), and linolenic acid (0.7${\sim}$1.2 mole%). In color study, extra virgin olive oil showed $L^{\ast}$ value of 81.7${\sim}$92.9, $a^{\ast}$ value of -28.3${\sim}$13.5 and $b^{\ast}$ value of 52.2${\sim}$139.0. Total phenol and ${\alpha}-tocopherol$ contents were 6.2${\sim}$24.9 mg/100 g and 5.5${\sim}$12.8 mg/100 g, respectively. In Rancimat test, the induction period of 13 extra virgin olive oils showed 31.76${\sim}$54.04 hr while their POV ranged from 13.5 to 22.9 meq/kg oil.

The Changes of Texture and some Chemical Components of Atka-fish by Various Baking Methods (구이방법에 따른 임연수어 Texture 및 성분변화)

  • 조순옥;조신호;이효지
    • Korean journal of food and cookery science
    • /
    • v.1 no.1
    • /
    • pp.74-81
    • /
    • 1985
  • For this research, the Atka-fisher which are used commonly in many homes for baking and broilling were broiled by an iron baking method, a pan baking method, a grill baking method and a microwave baking method respectively after 20 hours salting with 3% salt concentration of fish muscle weight. This thesis has an intention of appreciating the tastes according to each baking method through a sensory test, of examining the corelation between the change of texture measured by Rheometer and a sensory test and of comparing the changes of chemical component of the fish. The results were as follow: 1. The appearance of the broiled Atka-fish maintained a good appearance by the iron baking method and the grill baking method. In the color, the iron baking method and the grill baking method by direct :fire resulted a good score too. In the flavor, there was a significant difference between the grill baking method and the microwave baking method while there was no difference between the iron baking method and the pan baking method. The result of tenderness showed that the pan baking method has the highest score. Difference between the iron baking method and the pan baking was not significant. There was no difference in tenderness between the grill baking method and the microwave baking method. The iron baking method showed-the highest score in juciness and the microwave baking method stowed the highest score in acceptability however the differences were not significant. 2. As a result of the measurement of the texture by Rheometer, the iron baking method and the grill baking method showed higher score than other methods in hardness and chewiness. In springiness and cohesiveness, there was no significant difference among methods. As a result of the measurement of the texture by Rheometer, the corelation with a sensory test was considered to be low. 3. After broil, the cooking retention was the highest in the pan baking method and the moisture content was the highest in microwave baking method. Nitrogen content was the highest in the iron baking method. Fat content was the highest in the iron baking method, followed by the grill baking method, the pan baking method, and the microwave baking method. Free amino acid content was the highest in the iron baking method, followed by the grill baking method, the pan baking method and the micro-wave baking method.

  • PDF

Prediction of field failure rate using data mining in the Automotive semiconductor (데이터 마이닝 기법을 이용한 차량용 반도체의 불량률 예측 연구)

  • Yun, Gyungsik;Jung, Hee-Won;Park, Seungbum
    • Journal of Technology Innovation
    • /
    • v.26 no.3
    • /
    • pp.37-68
    • /
    • 2018
  • Since the 20th century, automobiles, which are the most common means of transportation, have been evolving as the use of electronic control devices and automotive semiconductors increases dramatically. Automotive semiconductors are a key component in automotive electronic control devices and are used to provide stability, efficiency of fuel use, and stability of operation to consumers. For example, automotive semiconductors include engines control, technologies for managing electric motors, transmission control units, hybrid vehicle control, start/stop systems, electronic motor control, automotive radar and LIDAR, smart head lamps, head-up displays, lane keeping systems. As such, semiconductors are being applied to almost all electronic control devices that make up an automobile, and they are creating more effects than simply combining mechanical devices. Since automotive semiconductors have a high data rate basically, a microprocessor unit is being used instead of a micro control unit. For example, semiconductors based on ARM processors are being used in telematics, audio/video multi-medias and navigation. Automotive semiconductors require characteristics such as high reliability, durability and long-term supply, considering the period of use of the automobile for more than 10 years. The reliability of automotive semiconductors is directly linked to the safety of automobiles. The semiconductor industry uses JEDEC and AEC standards to evaluate the reliability of automotive semiconductors. In addition, the life expectancy of the product is estimated at the early stage of development and at the early stage of mass production by using the reliability test method and results that are presented as standard in the automobile industry. However, there are limitations in predicting the failure rate caused by various parameters such as customer's various conditions of use and usage time. To overcome these limitations, much research has been done in academia and industry. Among them, researches using data mining techniques have been carried out in many semiconductor fields, but application and research on automotive semiconductors have not yet been studied. In this regard, this study investigates the relationship between data generated during semiconductor assembly and package test process by using data mining technique, and uses data mining technique suitable for predicting potential failure rate using customer bad data.

A Study on Change in Cement Mortar Characteristics under Carbonation Based on Tests for Hydration and Porosity (수화물 및 공극률 관측 실험을 통한 시멘트모르타르의 탄산화 특성 변화에 대한 연구)

  • Kwon, Seung-Jun;Song, Ha-Won;Park, Sang-Soon
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.613-621
    • /
    • 2007
  • Due to the increasing significance of durability, much researches on carbonation, one of the major deterioration phenomena are carried out. However, conventional researches based on fully hardened concrete are focused on prediction of carbonation depth and they sometimes cause errors. In contrast with steel members, behaviors in early-aged concrete such as porosity and hydrates (calcium hydroxide) are very important and may be changed under carbonation process. Because transportation of deteriorating factors is mainly dependent on porosity and saturation, it is desirable to consider these changes in behaviors in early-aged concrete under carbonation for reasonable analysis of durability in long term exposure or combined deterioration. As for porosity, unless the decrease in $CO_2$ diffusion due to change in porosity is considered, the results from the prediction is overestimated. The carbonation depth and characteristics of pore water are mainly determined by amount of calcium hydroxide, and bound chloride content in carbonated concrete is also affected. So Analysis based on test for hydration and porosity is recently carried out for evaluation of carbonation characteristics. In this study, changes in porosity and hydrate $(Ca(OH)_2)$ under carbonation process are performed through the tests. Mercury Intrusion Porosimetry (MIP) for changed porosity, Thermogravimetric Analysis (TGA) for amount of $(Ca(OH)_2)$ are carried out respectively and analysis technique for porosity and hydrates under carbonation is developed utilizing modeling for behavior in early-aged concrete such as multi component hydration heat model (MCHHM) and micro pore structure formation model (MPSFM). The results from developed technique is in reasonable agreement with experimental data, respectively and they are evaluated to be used for analysis of chloride behavior in carbonated concrete.