• Title/Summary/Keyword: micro-CT

Search Result 421, Processing Time 0.035 seconds

A Ring Artifact Correction Method for a Flat-panel Detector Based Micro-CT System (평판 디텍터 기반 마이크로 CT시스템을 위한 Ring Artifact 보정 방법)

  • Kim, Gyu-Won;Lee, Soo-Yeol;Cho, Min-Hyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.6
    • /
    • pp.476-481
    • /
    • 2009
  • The most troublesome artifacts in micro computed tomography (micro-CT) are ring artifacts. The ring artifacts are caused by non-uniform sensitivity and defective pixels of the x-ray detector. These ring artifacts seriously degrade the quality of CT images. In flat-panel detector based micro-CT systems, the ring artifacts are hardly removed by conventional correction methods of digital radiography, because very small difference of detector pixel signals may make severe ring artifacts. This paper presents a novel method to remove ring artifacts in flat-panel detector based micro-CT systems. First, the bad lines of a sinogram which are caused by defective pixels of the detector are identified, and then, they are corrected using a cubic spline interpolation technique. Finally, a ring artifacts free image is reconstructed from the corrected projections. We applied the method to various kinds of objects and found that the image qualities were much improved.

Multimodality Image Registration and Fusion using Feature Extraction (특징 추출을 이용한 다중 영상 정합 및 융합 연구)

  • Woo, Sang-Keun;Kim, Jee-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.2 s.46
    • /
    • pp.123-130
    • /
    • 2007
  • The aim of this study was to propose a fusion and registration method with heterogeneous small animal acquisition system in small animal in-vivo study. After an intravenous injection of $^{18}F$-FDG through tail vain and 60 min delay for uptake, mouse was placed on an acryl plate with fiducial markers that were made for fusion between small animal PET (microPET R4, Concorde Microsystems, Knoxville TN) and Discovery LS CT images. The acquired emission list-mode data was sorted to temporally framed sinograms and reconstructed using FORE rebining and 2D-OSEM algorithms without correction of attenuation and scatter. After PET imaging, CT images were acquired by mean of a clinical PET/CT with high-resolution mode. The microPET and CT images were fusion and co-registered using the fiducial markers and segmented lung region in both data sets to perform a point-based rigid co-registration. This method improves the quantitative accuracy and interpretation of the tracer.

  • PDF

Micro-computed tomography in preventive and restorative dental research: A review

  • Ghavami-Lahiji, Mehrsima;Davalloo, Reza Tayefeh;Tajziehchi, Gelareh;Shams, Paria
    • Imaging Science in Dentistry
    • /
    • v.51 no.4
    • /
    • pp.341-350
    • /
    • 2021
  • Purpose: The use of micro-computed tomography (micro-CT) scans in biomedical and dental research is growing rapidly. This study aimed to explore the scientific literature on approaches and applications of micro-CT in restorative dentistry. Materials and Methods: An electronic search of publications from January 2009 to March 2021 was conducted using ScienceDirect, PubMed, and Google Scholar. The search included only English-language articles. Therefore, only studies that addressed recent advances and the potential uses of micro-CT in restorative and preventive dentistry were selected. Results: Micro-CT is a tool that enables 3-dimensional imaging on a small scale with very high resolution. In this method, there is no need for sample preparation or slicing. Therefore, it is possible to examine the internal structure of tissue and the internal adaptation of materials to surfaces without destroying them. Due to these advantages, micro-CT has been recommended as a standard imaging tool in dental research for many applications such as tissue engineering, endodontics, restorative dentistry, and research on the mineral density of hard tissues and bone growth. However, the high costs of micro-CT, the time necessary for scanning and reconstruction, computer expertise requirements, and the enormous volume of information are drawbacks. Conclusion: The potential of micro-CT as an emerging, accurate, non-destructive approach is clear, and the valuable research findings reported in the literature provide an impetus for researchers to perform future studies focusing on employing this method in dental research.

CBCT-based assessment of root canal treatment using micro-CT reference images

  • Lamira, Alessando;Mazzi-Chaves, Jardel Francisco;Nicolielo, Laura Ferreira Pinheiro;Leoni, Graziela Bianchi;Silva-Sousa, Alice Correa;Silva-Sousa, Yara Terezinha Correa;Pauwels, Ruben;Buls, Nico;Jacobs, Reinhilde;Sousa-Neto, Manoel Damiao
    • Imaging Science in Dentistry
    • /
    • v.52 no.3
    • /
    • pp.245-258
    • /
    • 2022
  • Purpose: This study compared the root canal anatomy between cone-beam computed tomography (CBCT) and micro-computed tomography (micro-CT) images before and after biomechanical preparation and root canal filling. Materials and Methods: Isthmus-containing mesial roots of mandibular molars(n=14) were scanned by micro-CT and 3 CBCT devices: 3D Accuitomo 170 (ACC), NewTom 5G (N5G) and NewTom VGi evo (NEVO). Two calibrated observers evaluated the images for 2-dimensional quantitative parameters, the presence of debris or root perforation, and filling quality in the root canal and isthmus. The kappa coefficient, analysis of variance, and the Tukey test were used for statistical analyses(α=5%). Results: Substantial intra-observer agreement (κ=0.63) was found between micro-CT and ACC, N5G, and NEVO. Debris detection was difficult using ACC (42.9%), N5G (40.0%), and NEVO (40%), with no agreement between micro-CT and ACC, N5G, and NEVO (0.05<κ<0.12). After biomechanical preparation, 2.4%-4.8% of CBCT images showed root perforation that was absent on micro-CT. The 2D parameters showed satisfactory reproducibility between micro-CT and ACC, N5G, and NEVO (intraclass correlation coefficient: 0.60-0.73). Partially filled isthmuses were observed in 2.9% of the ACC images, 8.8% of the N5G and NEVO images, and 26.5% of the micro-CT images, with no agreement between micro-CT and ACC, and poor agreement between micro-CT and N5G and NEVO. Excellent agreement was found for area, perimeter, and the major and minor diameters, while the roundness measures were satisfactory. Conclusion: CBCT images aided in isthmus detection and classification, but did not allow their classification after biomechanical preparation and root canal filling.

A study on enamel thickness of maxillary incisors using X-ray micro computed tomography (MicroCT를 이용한 상악 전치의 법랑질 두께에 관한 연구)

  • Cho, Young-Won;Cho, Jin-Hyun;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.4
    • /
    • pp.301-307
    • /
    • 2010
  • Purpose: The objectives of the current study are to assess the accuracy of X-Ray Micro Computed Tomography (microCT) in measuring enamel thickness and to evaluate enamel thickness in maxillary incisors of Koreans. Materials and methods: Five maxillary incisors were embedded in resin block. These teeth were longitudinally sectioned labiolingually through the medial axis. After polishing, the teeth were scanned using a microCT (X-EYE SYSTEM; DRGEM, Seoul, Korea). On a scanning electron microscope (S-4300; Hitachi, Tokyo, Japan) (${\times}20$) and a microCT, nearly identical planes were reconstructed. In each tooth, the thickness of labial enamel was measured 1, 3 and 5 mm above the cementoenamel junction (CEJ). Thus, the accuracy of the microCT was evaluated. In addition, using 26 maxillary central incisors and 11 maxillary lateral incisors, in the medial axis and 2 mm remote areas mesially and distally from the medial axis, the thickness of labial enamel was measured 1, 3 and 5 mm above the CEJ along the long axis of the teeth. Results: Measurements from nearly identical planes in physical and microCT sections differed by 3.81%. An independent t-test was performed and this showed that there were no significant differences in the measurements between the two methods. Mean values of labial enamel thickness in maxillary central incisors 1, 3 and 5 mm above the CEJ were $0.32{\pm}0.01$, $0.50{\pm}0.0.2$ and $0.70{\pm}0.02\;mm$, respectively. Mean values of labial enamel thickness in maxillary lateral incisors 1, 3 and 5 mm above the CEJ were $0.30{\pm}0.01$, $0.55{\pm}0.03$ and $0.80{\pm}0.02\;mm$, respectively. Conclusion: In measuring enamel thickness, microCT is one of useful way of measurement. So according to the results of this research, when restoring a porcelain laminate veneer on maxillary incisors in Koreans, careful consideration is needed in the amount of enamel reduction.

Study on a methodology for estimation of void ratio of very fine clayey soil by using micro X-ray CT scan (Micro X-ray CT 촬영을 통한 세립 점성토의 간극비 추정 방법 연구)

  • Heo, Seong-Jun;Kim, Kwang-Yeom;Kwon, Young-Cheul;Kim, Hong-Taek;Shin, Hyu-Soung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.392-403
    • /
    • 2010
  • In this study, a new methodology by using the X-ray CT scan is proposed for estimating void ratio of very fine clayey soil. Since the particle size of the clay is too fine to calculate the volume of void inside the clays, CT scanning tests with a number of clay specimens that were artificially set to have various designated void ratios have been carried out. From the tests, a relationship between the CT values and void ratios is given to be used for estimating the invisible void ratio of very fine clay from a representative CT value scanned. The linear relationship was able to be acquired finally. It is expected that micro X-ray CT scanning can be capable of capturing the void ratio of very fine soils without any errors inherent in the conventional specific gravity tests.

  • PDF

Quantitative Micro-CT Evaluation of Microleakage in Composite Resin Restorations (Micro-CT를 이용한 복합 레진 수복물 미세 누출도의 정량 분석)

  • Lee, Sang-Ik;Hyun, Hong-Keun;Kim, Young-Jae;Kim, Jung-Wook;Lee, Sang-Hoon;Kim, Chong-Chul;Hahn, Se-Hyun;Jang, Ki-Taeg
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.2
    • /
    • pp.222-233
    • /
    • 2007
  • One of the most important and basic test of dental restorative materials is the evaluation of microleakage into the tooth-restorative interface. There are many techniques to test microleakage, but most of them have several disadvantages. Recently developed microtomography(micro-CT) can provide the three dimensional image and information about the internal component in non-destructive way, therefore using micro-CT, it is possible to evaluate microleakage exactly in quantitative manner. The purpose of this study is to find a new method for quantitative and non-destructive evaluation of microleakage in composite resin restorations using micro-CT and to compare the new method with conventional dye penetration method. Thus, microleakages of two kinds of dentin bonding systems were evaluated with above two methods. 40 extracted sound human premolars were randomly divided into two groups consisting of 20 samples and restored accordingly. Group 1 : Class V resin restorations with $Adper^{TM}$ Singe Bond Group, 2 : Class V resin restorations with $Adper^{TM}\;Promp^{TM}$ L-pop. The $Filtek^{TM}$ Supreme was applied to the Class V cavities of all teeth. After that, 10 teeth from each group were applied to evaluation of microleakage using micro-CT, and other 10 teeth from each group were using conventional dye penetration method. The conclusions of this study were as follow : 1 Using micro-CT, Group 1 showed significantly less microleakage than Group 2 and there was statistically significant difference(p<0.01) between two groups. 2. Using conventional dye penetration method, Group 1 leaked less than Group 2 and there was statistically significant difference(p<0.01) between two groups 3. The difference between two groups is more evident in the method using micro-CT. 4. In all two methods, microleakage appeared more into the cavities to dentinal margins than enamel margins.

  • PDF

Segmentation of Natural Fine Aggregates in Micro-CT Microstructures of Recycled Aggregates Using Unet-VGG16 (Unet-VGG16 모델을 활용한 순환골재 마이크로-CT 미세구조의 천연골재 분할)

  • Sung-Wook Hong;Deokgi Mun;Se-Yun Kim;Tong-Seok Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.143-149
    • /
    • 2024
  • Segmentation of material phases through image analysis is essential for analyzing the microstructure of materials. Micro-CT images exhibit variations in grayscale values depending on the phases constituting the material. Phase segmentation is generally achieved by comparing the grayscale values in the images. In the case of waste concrete used as a recycled aggregate, it is challenging to distinguish between hydrated cement paste and natural aggregates, as these components exhibit similar grayscale values in micro-CT images. In this study, we propose a method for automatically separating the aggregates in concrete, in micro-CT images. Utilizing the Unet-VGG16 deep-learning network, we introduce a technique for segmenting the 2D aggregate images and stacking them to obtain 3D aggregate images. Image filtering is employed to separate aggregate particles from the selected 3D aggregate images. The performance of aggregate segmentation is validated through accuracy, precision, recall, and F1-score assessments.

The evaluation of the correlation between histomorphometric analysis and micro-computed tomography analysis in AdBMP-2 induced bone regeneration in rat calvarial defects

  • Park, Shin-Young;Kim, Kyoung-Hwa;Koo, Ki-Tae;Lee, Kang-Woon;Lee, Yong-Moo;Chung, Chong-Pyoung;Seol, Yang-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.5
    • /
    • pp.218-226
    • /
    • 2011
  • Purpose: Micro-computed tomography (micro-CT) has been widely used in the evaluation of regenerated bone tissue but the reliability of micro-CT has not yet been established. This study evaluated the correlation between histomorphometric analysis and micro-CT analysis in performing new bone formation measurement. Methods: Critical-size calvarial defects were created using a 8 mm trephine bur in a total of 24 Sprague-Dawley rats, and collagen gel mixed with autogenous rat bone marrow stromal cells (BMSCs) or autogenous rat BMSCs transduced by adenovirus containing bone morphogenic protein-2 (BMP-2) genes was loaded into the defect site. In the control group, collagen gel alone was loaded into the defect. After 2 and 4 weeks, the animals were euthanized and calvaria containing defects were harvested. Micro-CT analysis and histomorphometric analysis of each sample were accomplished and the statistical evaluation about the correlation between both analyses was performed. Results: New bone formation of the BMP-2 group was greater than that of the other groups at 2 and 4 weeks in both histomorphometric analysis and micro-CT analysis (P=0.026, P=0.034). Histomorphometric analysis of representative sections showed similar results to histomorphometric analysis with a mean value of 3 sections. Measurement of new bone formation was highly correlated between histomorphometric analysis and micro-CT analysis, especially at the low lower threshold level at 2 weeks (adjusted $r^2=0.907$, P<0.001). New bone formation of the BMP-2 group analyzed by micro-CT tended to decline sharply with an increasing lower threshold level, and it was statistically significant (P<0.001). Conclusions: Both histomorphometric analysis and micro-CT analysis were valid methods for measurement of the new bone in rat calvarial defects and the ability to detect the new bone in micro-CT analysis was highly influenced by the threshold level in the BMP-2 group at early stage.