• Title/Summary/Keyword: micro viscosity

Search Result 180, Processing Time 0.033 seconds

Prediction of the Rheological Properties of Cement Mortar Applying Multiscale Techniques (멀티스케일 기법을 적용한 시멘트 모르타르의 유변특성 예측)

  • Eun-Seok Choi;Jun-Woo Lee;Su-Tae Kang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.69-76
    • /
    • 2024
  • The rheological properties of fresh concrete significantly influence its manufacturing and performance. However, the diversification of newly developed mixtures and manufacturing techniques has made it challenging to accurately predict these properties using traditional empirical methods. This study introduces a multiscale rheological property prediction model designed to quantitatively anticipate the rheological characteristics from nano-scale interparticle interactions, such as those among cement particles, to micro-scale behaviors, such as those involving fine aggregates. The Yield Stress Model (YODEL), the Chateau-Ovarlez-Trung equation, and the Krieger-Dougherty equation were utilized to predict the yield stress for cement paste and mortar, as well as the plastic viscosity. Initially, predictions were made for the paste scale, using the water-cement ratio (W/C) of the cement paste. These predictions then served as a basis for further forecasting of the rheological properties at the mortar scale, incorporating the same W/C and adding the cement-sand volume ratio (C/S). Lastly, the practicality of the predictive model was assessed by comparing the forecasted outcomes to experimental results obtained from rotational rheometer.

Development and Assessment of Laboratory Testing Apparatus on Grouting Injection Performance (그라우팅 주입성능 실내실험 장비 개발 및 신뢰도 평가)

  • Jin, Hyunwoo;Ryu, Byunghyun;Lee, Jangguen
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.10
    • /
    • pp.23-31
    • /
    • 2016
  • Grout is generally operated with low viscous material similar to water, but grout for micro crack with high viscous materials and high injection pressure is gradually increased under the development of underground and subsea space. In order to estimate grouting injection performance considering crack width, viscosity of grouting materials, and injection pressure, there should be a reliable standard laboratory testing method. In this paper, theoretical injection mechanisms of grouting materials are presented as radial and linear flows, and laboratory testing apparatus are introduced to simulate each flow case. Radial flow is simulated by using acrylic disk plates which are able to spread grouting material radially from the center of the disk plates, and linear flow is simulated by using stainless parallel plane plates which are able to spread grouting material linearly. Apparatus are consist of upper and lower plates and industrial films with different thickness are placed between plates in order to simulate various crack widths. Laboratory verification tests with these apparatus were conducted with tap water (1cP at $20^{\circ}C$) as an injection material. Through the laboratory testing results, the best laboratory testing method is recommended in order to estimate grouting injection performance.

Synergistic Interaction in W/O and W/S Emulsions Stabilized by a Mixture of Powders and Surfactant (분체와 유화제의 상호 관계성에 기인한 저점도 W/O 및 W/S 에멀젼의 안정성 연구)

  • In, So Hyun;Cho, Hwanil;Kang, Nae Gyu;Han, Jong Sup;Park, Sun Gyoo;Lee, Cheon Koo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.1
    • /
    • pp.15-28
    • /
    • 2016
  • Water-in-oil emulsions including water-in-ester oil and water-in-silicone oil (W/O+S) have various advantages such as blocking moisture evaporation and forming air permeable membrane. However, their applications have been limited due to the poor stability under low viscosity condition. In this study, we investigated the effect of synergistic interaction between nonionic surfactant, micro-size particles and cationic surfactant on the stability of W/O+S formulation. The stability of W/O+S emulsions was changed as a function of cationic surfactant concentration where it increased at lower concentration and then started to decrease above a critical point. Finally, emulsion phase inversion occurred at a high concentration. The results suggest that W/O+S emulsions of low viscosity ranging from 2000 to 5000 cps can be stabilized under the conditions where a nonionic surfactant, micro-size particles and a cationic surfactant are used in the range of 1.0 ~ 4.0 wt%, 2.5 wt% and 0.1 ~ 0.5 wt%, respectively.

Study of FAME components and total contents on Micro-algal Biodiesel derived from Dunaliella tertiolecta (Dunaliella tertiolecta를 이용한 미세조류 유래 바이오디젤의 FAME 성분 특성 연구)

  • Lee, Don-Min;Min, Kuyung-Il;Yim, Eui-Soon;Ha, Jong-Han;Lee, Choul-Gyun;Lee, Bong-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.320-328
    • /
    • 2014
  • Biodiesel has very similar physical properties (density, kinematic viscosity) and has even higher cetane number compare with conventional diesel. There are no necessity to change or modify the infra-structure & engine system. It is known that fatty acid methyl ester (FAME) is oxygen-contained components increasing the combustibility, biodegradability and reduced the exhaust harmful gas. These things made the biodiesel more popular as an alternative diesel fuel. But biodiesel's sources are controversial issues about $CO_2$ reduction effect at this time because those mainly come from edible plants such as soy, palm, rapeseed already spent lot of $CO_2$ to cultivate. Whereas micro-algae is focused because they are inedible and has rapid growth rates & high carbon-dioxide adsorption rate per area. In this study, we analyze the each FAME components using $GC{\times}GC$-TOFMS in stead of GC-FID and verify the previous total FAME contents method's applicability through the micro algal biodiesel derived from Dunaliella tertiolecta.

Physical Property and Morphology Observation of HepG2 Cells by Various Concentration of Paraquat (파라쿼트 농도에 따른 HepG2 세포의 물리적 특성 변화와 실시간 모폴로지 관찰)

  • Lee, Dong-Yun;Kang, Hyen-Wook;Muramatsu, Hiroshi;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1232_1233
    • /
    • 2009
  • Paraquat is well-known to cause hepatotoxic responses in human and other mammal species. In solution, it forms free radicals and charge-transfer complex of which formation plays an important role in determination of its biological activity in the presence of various anions. The HepG2 cells were cultured onto a quartz crystal sensor which is possible to detect the density and a viscosity changes using the resonance frequency (F) and the resonance resistance (R). The plot of F-R diagram is able to explain the rheological change of cells onto the surface of the quartz crystal sensor. In this paper, we investigated the physical properties of the HepG2 cells cultured onto a ITO electrode of the quartz crystal sensor according to the paraquat injection at various concentrations (100 mM, 10 mM, 1 mM). We also observed the morphological changes with a micro CCD camera, simultaneously. The HepG2 cells were cultured onto the ITO electrode surface of the quartz crystal modified a collagen film in $CO_2$ incubator. After the paraquat injection, we observed the changes of the morphologies by the micro CCD camera depending on time and analyzed the physical changes of cells on the electrode surface of quartz crystal using F-R diagram. From all results, we proved the effect of paraquat at various concentrations which is led to an apoptosis such as weakening and death of the cells by oxidation and reduction reaction that were produced the superoxide anions and other free radicals.

  • PDF

Micro to Nano-scale Electrohydrodynamic Nano-Inkjet Printing for Printed Electronics: Fundamentals and Solar Cell Applications

  • Byeon, Do-Yeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.3.2-3.2
    • /
    • 2011
  • In recent years, inkjet printing technology has received significant attention as a micro/nanofabrication technique for flexible printing of electronic circuits and solar cells, as well for biomaterial patterning. It eliminates the need for physical masks, causes fewer environment problems, lowers fabrication costs, and offers good layer-to-layer registration. To fulfill the requirements for use in the above applications, however, the inkjet system must meet certain criteria such as high frequency jetting, uniform droplet size, high density nozzle array, etc. Existing inkjet devices are either based on thermal bubbles or piezoelectric pumping; they have several drawbacks for flexible printing. For instance, thermal bubble jetting has limitations in terms of size and density of the nozzle array as well as the ejection frequency. Piezoelectric based devices suffer from poor pumping energy in addition to inadequate ejection frequency. Recently, an electrohydrodynamic (EHD) printing technique has been suggested and proposed as an alternative to thermal bubble or piezoelectric devices. In EHD jetting, a liquid (ink) is pumped through a nozzle and a strong electric field is applied between the nozzle and an extractor plate, which induce charges at the surfaces of the liquid meniscus. This electric field creates an electric stress that stretches the meniscus in the direction of the electric field. Once the electric field force is larger than the surface tension force, a liquid droplet is formed. An EHD inkjet head can produce droplets smaller than the size of the nozzle that produce them. Furthermore, the EHD nano-inkjet can eject high viscosity liquid through the nozzle forming tiny structures. These unique features distinguish EHD printing from conventional methods for sub-micron resolution printing. In this presentation, I will introduce the recent research results regarding the EHD nano-inkjet and the printing system, which has been applied to solar cell or thin film transistor applications.

  • PDF

The Physical Properties Variation of Grout Materials and Improvement of Grouting Effects on Application of High Performance Injection Equipment (고성능 주입장비의 적용에 따른 주입재의 물성변화 및 주입효과 증진에 관한 연구)

  • 천병식;김진춘;김백영
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.179-190
    • /
    • 2003
  • The grout based on solution type makes it difficult to get the improvement of ground strength and the effefct of water curtain because it has lower strength and durability than suspension type. Nowadays, the technology of particle acceleration, that enhance the material permeability, such as grout based on solution type, and inexpensive grout, is being required. For these reasons, in this study, using wet milling system, we evaluated physical properties of manufactured factors such as water-cement ratio of particles before being milled, optimum milling capacity by controlling milling time and rpm, viscosity of materials, permeation coefficient, and unconfined compressive strength. Also, using micro wet milling apparatus which could manufacture ordinary Portland cement and high speed shear mix which could forcefully separate conglomerate particles in situ, we performed electrical resistivity investigation and falling head permeability tests to analyze differences of grouting effects. From these results, we found that the permeability of the applied equipment was much superior, and in the case of using high speed shear mixer, particles of grout material were well separated.

Sanitation and Quality Improvement of Salted and Fermented Anchovy Sauce by Gamma Irradiation (멸치액젓의 위생적 품질향상을 위한 감마선 조사기술 이용)

  • 김재현;안현주;김정옥;류기형;육홍선;이영남;변명우
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.6
    • /
    • pp.1035-1041
    • /
    • 2000
  • Gamma irradiation was used to improve sanitation and quality of salted and fermented anchovy sauce. For commercial production, comparison with currently using sterilization methods, such as micro-filtration and heat treatment were also conducted. Control was prepared without irradiation and sterilization process. Microbiological, physiochemical, and sensory qualities were analyzed to observe the Quality changes during the storage. Irradiation at 5 kGy or above and micro-filtration process completely eliminated microorganisms detected in this study As irradiation dose increased, the color appeared brighter and irradiation at 5 kGy or above showed similar color L-value to that of sample treated with microfiltration. The color L, a, b-value of heat-treated sample always showed lower. The pH, salinity, and viscosity were sustained during storage. From the results of sensory evaluation, the samples treated with gamma irradiation and microfiltration obtained better scores than control or heat-sterilized. Gamma irradiation to salted and fermented anchovy sauce presented the best quality products among different sterilizing methods, especially at 5 kGy dose. Therefore, gamma irradiation can be successfully applied to commercial large scale production as a new sanitation technology with improved quality.

  • PDF

Process window of simultaneous transfer and bonding materials using laser-assisted bonding for mini- and micro-LED display panel packaging

  • Yong-Sung Eom;Gwang-Mun Choi;Ki-Seok Jang;Jiho Joo;Chan-mi Lee;Jin-Hyuk Oh;Seok-Hwan Moon;Kwang-Seong Choi
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.347-359
    • /
    • 2024
  • A simultaneous transfer and bonding (SITRAB) process using areal laser irradiation is introduced for high-yield and cost-effective production of mini- or micro-light-emitting diode (LED) display panels. SITRAB materials are special epoxy-based solvent-free pastes. Three types of pot life are studied to obtain a convenient SITRAB process: Room temperature pot life (RPL), stage pot life (SPL), and laser pot life (LPL). In this study, the RPL was found to be 1.2 times the starting viscosity at 25℃, and the SPL was defined as the time the solder can be wetted by the SITRAB paste at given stage temperatures of 80℃, 90℃, and 100℃. The LPL, on the other hand, was referred to as the number of areal laser irradiations for the tiling process for red, green, and blue LEDs at the given stage temperatures. The process windows of SPL and LPL were identified based on their critical time and conversion requirements for good solder wetting. The measured RPL and SPL at the stage temperature of 80℃ were 6 days and 8 h, respectively, and the LPL was more than six at these stage temperatures.

IN-VITRO CHARACTERIZATION OF THE THROMBOTIC POTENTIAL OF WHOLE BLOOD USING AN IMPEDANCE METHOD

  • Granaderos, Carlo;Park, Joong-Chun;Pak, Bock-Choon;Kim, Cheol-Sang;Cho, Young-I
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2785-2790
    • /
    • 2007
  • This study presents an impedance method of in-vitro characterization of the thrombotic potential of whole blood. Whole blood samples of 0.2 cc were put into a micro-cell with embedded three electrodes immediately after venepuncture at $37^{\circ}C$. Anti-coagulated blood samples were also collected for hematocrit and blood viscosity analyses. The rate of change of electron flow was measured, which indicates the inverse of the thrombotic potential. A sudden decrease in the rate of change of electron flow was observed at a time equal to approximately 110 seconds. This sudden decrease was significantly delayed in anti-coagulated samples. After the sudden decrease, the rate continued to decrease, reaching a minimum value in unadulterated samples while the change in the rate in the anti-coagulated ones was found rather moderate. Based on these preliminary findings, the present method may be of used as a new tool for the diagnosis of the thrombotic potential of whole blood.

  • PDF