• 제목/요약/키워드: micro tension test

검색결과 37건 처리시간 0.018초

마이크로 금속 박판의 동적 물성치 측정을 위한 마이크로 동적 시험 장치 개발에 관한 연구 (A Study on a micro dynamic tester development for a micro property measurement of a micro metal specimen)

  • 이진표;이혜진;황재혁;이낙규;배재성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.163-168
    • /
    • 2006
  • In a micro-unit of electronic-machine, vibration can be excited by a small impact, and this vibration acts as a fatigue load. To measure the vibration effect on the micro unit, a micro dynamic tester is needed to test a micro specimen. In this paper, it has confirmed a movement of the PZT(piezo actuator) to use a sine signal. And, it has confirmed a fracture of specimens by using a tension-tension input signal in PZT. A metal-material property in the micro scale has been tested to compare with the macro scale. A fatigue test has been conducted by using PZT actuator to give a bending-tension effect.

  • PDF

마이크로 스프링 구조를 갖는 121 pins/mm2 고밀도 프로브 카드 제작기술 (Development of 121 pins/mm2 High Density Probe Card using Micro-spring Architecture)

  • 민철홍;김태선
    • 한국전기전자재료학회논문지
    • /
    • 제20권9호
    • /
    • pp.749-755
    • /
    • 2007
  • Recently, novel MEMS probe cards can support reliable wafer level chip test with high density probing capacity. However, manufacturing cost and process complexity are crucial weak points for low cost mass production. To overcome these limitations, we have developed micro spring structured MEMS probe card. For fabrication of micro spring module, a wire bonder and electrolytic polished gold wires are used. In this case, stringent tension force control is essential to guarantee the low level contact resistance of micro spring for reliable probing performance. For this, relation between tension force of fabricated probe card and contact resistance is characterized. Compare to conventional probe cards, developed MEMS probe card requires fewer fabrication steps and it can be manufactured with lower cost than other MEMS probe cards. Also, due to the small contact scratch patterns, we expect that it can be applied to bumping types chip test which require higher probing density.

프루브 팁용 BeCu 박막의 피로성질 연구 (A Study On Fatigue Properties Of BeCu Thin Film For Probe Tip)

  • 신명수;박준협;서정윤
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.256-259
    • /
    • 2008
  • An micro-probe tip must be manufactured using thin film to evaluate integrity of the semiconductor with narrow distance between pads. In this study, fatigue tests were performed for BeCu thin film which is used in micro-probe tip of semiconductor test machine. The thin film was manufactured by electro plating process, and the specimens were fabricated by wire-cut electric discharge method to make hour glass type specimen of $5000{\mu}m$ width, $29200{\mu}m$ length and $30{\mu}m$ thickness. The fatigue test of load control with 10Hz frequency was performed, in ambient environment. The fatigue cycles were tension-tension with mean stress, at stress ratio, R=0.1.

  • PDF

단결정 실리콘 박막의 미소인장 물성 평가 (Micro-tensile Test for Micron-sized SCS Thin Film)

  • 이상주;한승우;김재현;이학주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.45-48
    • /
    • 2008
  • The mechanical behavior of small-sized materials has been investigated for many industrial applications, including MEMS and semiconductors. It is challenging to obtain accurate mechanical properties measurements for thin films due to several technical difficulties, including measurement of strain, specimen alignment, and fabrication. In this work, we used the micro-tensile testing unit with the real-time DIC (Digital Image Correlation) strain measurement system. This system has advantages of real time strain monitoring up to 50 nm resolution during the micro-tensile test, and ability to measure the young's modulus and Poisson's ratio at the same time. The mechanical properties of SCS (Single Crystal Silicon) are measured by uniaxial tension test from freestanding SCS which are $2.5{\mu}m$ thick, $200-500{\mu}m$ wide specimens on the (100) plane. Young's modulus, Poisson's ratio and tensile strength in the <110> direction are measured by micro-tensile testing system.

  • PDF

Carbon Fabric/Epoxy 적층판의 인장-압축 피로거동 (Tension-Compression Fatigue Behavior of Carbon Fabric/Epoxy Laminates)

  • 김진봉;김태욱
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.60-64
    • /
    • 2001
  • In this paper, the tension-compression fatigue test method and the fatigue life characteristics of carbon fabric/epoxy laminate coupon are presented. To avoid the buckling during the compression, a proper design for the test coupons is essential. The critical buckling loads for the coupons are calculated by assuming the coupons as columns under two types of fixed conditions. The first is that both ends of each coupon are perfectly clamped, the second is that both ends of each coupon are simply supported. The strain-load curves are obtained by compressing the representative coupons, on each surface of which a strain gage is attached. The buckling loads obtained from the tests are all between the two calculated critical buckling loads. All the coupons are broken by the compression during the fatigue tests. It is estimated to be the reason that the fatigue load causes delamination before the eventual failure of each coupon, and sequentially the micro-buckling in the delaminated region drives each coupon into fatigue failure during the compression. The S-N curve, the fatigue life characteristics of carbon fabric/epoxy is obtained.

  • PDF

고밀도 프로빙 테스트를 위한 수직형 프로브카드의 제작 및 특성분석 (Development and Characterization of Vertical Type Probe Card for High Density Probing Test)

  • 민철홍;김태선
    • 한국전기전자재료학회논문지
    • /
    • 제19권9호
    • /
    • pp.825-831
    • /
    • 2006
  • As an increase of chip complexity and level of chip integration, chip input/output (I/O) pad pitches are also drastically reduced. With arrival of high complexity SoC (System on Chip) and SiP (System in Package) products, conventional horizontal type probe card showed its limitation on probing density for wafer level test. To enhance probing density, we proposed new vertical type probe card that has the $70{\mu}m$ probe needle with tungsten wire in $80{\mu}m$ micro-drilled hole in ceramic board. To minimize alignment error, micro-drilling conditions are optimized and epoxy-hardening conditions are also optimized to minimize planarity changes. To apply wafer level test for target devices (T5365 256M SDRAM), designed probe card was characterized by probe needle tension for test, contact resistance measurement, leakage current measurement and the planarity test. Compare to conventional probe card with minimum pitch of $50{\sim}125{\mu}m\;and\;2\;{\Omega}$ of average contact resistance, designed probe card showed only $22{\mu}$ of minimum pitch and $1.5{\Omega}$ of average contact resistance. And also, with the nature of vertical probing style, it showed comparably small contact scratch and it can be applied to bumping type chip test.

Stress Corrosion Cracking in the Pre-Cracked Specimens of Type 403 Stainless Steel

  • Kim, Jong Jip
    • Corrosion Science and Technology
    • /
    • 제3권1호
    • /
    • pp.14-19
    • /
    • 2004
  • Crack growth rate and threshold stress intensity factor for stress corrosion cracking(SCC), $K_{ISCC}$ were measured for type 403 stainless steel in 3,5% NaCl solution at room temperature and SCC was monitored by electrochemical noise technique during $K_{ISCC}$ testing. In rising load test, pits were formed at the tip of pre-crack for the pre-cracked compact tension specimen unlike in smooth round specimen in which only unstable pits were observed and hence immune to SCC. Micro-cracks were found to initiate from the pits in the former specimen, and initiation of micro-crack as well as macro-crack was detected by electrochemical noise technique in rising load $K_{ISCC}$ tests. Crack growth rate increased with increasing either displacement rate or stress intensity factor at crack initiation and was higher in rising load $K_{ISCC}$ test compared to constant load $K_{ISCC}$ test at given stress intensities.

바이오가스 MGT 발전용 전처리시스템 재료특성 평가 (Test Evaluation of Pretreatment System Material for Bio-gas Micro Gas Turbine Power Generation)

  • 허광범;박정극;임상규;김재훈
    • 신재생에너지
    • /
    • 제4권1호
    • /
    • pp.37-43
    • /
    • 2008
  • As the distributed generation becomes more reliable and economically feasible, it is expected that a higher application of the distributed generation units would be interconnected to the existing grids. This paper describes the results for the mechanical and environmental tests of pretreatment system material. Mechanical Characteristics make differences between parent / weldment, Notch existence / non-existence and air/$H_2O$ conditions. As a result, the life of pipe lines needs to maintain and fit for the operating period. Based on actual situations, the tension test of pipe welding-parts is carried out varying the exposure time of hydrogen sulfide and the fatigue resistance test is also performed inserting a notch into the pipe welding part, being exposed to the hydrogen sulfide environment for 720 hours.

  • PDF

원통형 셀 구조를 갖는 한방향 CFRP 적층 복합재료의 정적인장파괴거동 (Mechanical Properties and Fracture Behavior of Cylindrical Shell Type for Unidirectional CFRP Composite Material under Tension Load)

  • 오환섭
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 추계학술대회 논문집
    • /
    • pp.273-278
    • /
    • 1998
  • In this paper, basic micro-mechanical properties of unidirectional CFRP composite shell such as bonding strength, fiber volume fraction and void fraction are measured and tensile strength test is performed with a fixture. And then fracture surfaces are observed by SEM. In case of basic micro-mechanical properties, bonding strength is reduce with decreasing of radius of each ply in a shell for the effect of residual stress, fiber volume fraction is smaller than plate, and void fraction is vise versa. For these reason, tensile strength of shell is smaller than plate fabricated with same prepreg. For failure mode shell has many splitted part along its length, and it is assumed that this phenomenon is caused by the difference of bonding strength for residual stress.

  • PDF