• Title/Summary/Keyword: micro structures

Search Result 1,191, Processing Time 0.049 seconds

The Fabrication of Micro-Heaters with Low-Power Consumption Using SOI and Trench Structures

  • Chung, Gwiy-Sang;Hong, Seok-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.197-201
    • /
    • 2002
  • This paper presents optimized design, fabrication and thermal characteristics of micro-heaters for thermal MEMS (micro electro mechanical system) applications using SOI and trench structures. The micro-heaters are based on a thermal measurement principle and contains thermal isolation regions of 10 ${\mu}m$-thick Si membranes consisting of oxide-filled trenches in the SOI membrane rim. The micro-heaters were fabricated with Pt-RTD on the same substrate via MgO buff layer between Pt thin-film and $SiO_2$ layer. The thermal characteristics of micro-heater with trench-free SOI membrane structure was $280^{\circ}C$ at input power 0.9 W; in the presence of 10 trenches, it was $580^{\circ}C$ due to reduction of the external thermal loss. Therefore, a micro-heater with trenches in SOI membrane rim structure provides a powerful and versatile alternative technology for enhancing the performance of micro-thermal sensors and actuators.

  • PDF

Fabrication of a Micro/Nano-scaled Super-water-repellent Surface and Its Impact Behaviors of a Shooting Water Droplet (마이크로/나노 구조를 갖는 초발수성 표면의 제작 및 분사 액적의 충돌 특성 연구)

  • Kim, Hyung-Mo;Lee, Sang-Min;Lee, Chan;Kim, Moo-Hwan;Kim, Joon-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.9
    • /
    • pp.1020-1025
    • /
    • 2012
  • In this study, we fabricated the superhydrophobic and super-water-repellent surface with the micro/nano scale structures using simple conventional silicon wet-etching technique and the black silicon method by deep reactive ion etching. These fabrication methods are simple but very effective. Also we reported the droplet impact experimental results on the micro/nano-scaled surface. There are two representative impact behaviors as "rebound" and "fragmentation". We found the transition Weber number between "rebound" and "fragmentation" statements, experimentally. Additionally, we concerned about the dimensionless spreading diameters for our super-water-repellent surface. The novel characterization method was introduced for analysis including the "fragmentation" region. As a result, our super-water-repellent surface with the micro/nano-scaled structures shows the different impact behaviors compared with a reference smooth surface, by some meaningful experiments.

Visualization of Stirring Characteristics in a Microchannel with Structures Changed (마이크로 채널내 구조물 변경에 따른 교반특성 가시화)

  • Heo Hyeung Seok;Suh Yong Kweon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.79-80
    • /
    • 2003
  • This paper presents experimental results on stirring characteristics in a microchannel with structures changed. We fabricated a new chaotic micro mixer and made by a RP(Rapid Rrototyping) technology. Flow visualization for the stirring effect was performed by using pure orator in a reservoir and fluorescent dye in the other. Chaotic mixing was achieved by introducing periodic perturbation in the field of the microchannel flow by means of shaped structures. It was found that the stirring is enormously enhanced at larger bock-height.

  • PDF

Hand arm vibration measurement using micro-accelerometer in different brick structures

  • Gomathi, K.;Senthilkumar, A.;Shankar, S.;Thangavel, S.;Priya, R. Mohana
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.959-974
    • /
    • 2014
  • Hand-Arm Vibration Syndrome (HAVS) is a group of diseases caused by exposure of the hands to vibration while operating the hand held power tools such as road breaker, drilling machine, demolition hammer in construction works. In this paper, area-changed capacitive micro-accelerometer is designed to measure the vibration exposure on worker's hand when operating a drilling machine on various blocks such as clay block, paver block and solid cement block. The design process includes mathematical modelling of micro-accelerometer and simulations are done using INTELLISUITE 8.6. Experimental results are taken for various blocks surfaces using conventional and micro-accelerometer. Comparisons show that usage of area-changed micro-accelerometer for Hand-arm vibration monitoring provides better sensitivity, which in turn reduces the risk of HAVS in workers.

Stress Measurement of films using surface micromachined test structures (표면 미세 가공된 구조체를 이용한 박막의 응력 측정)

  • 이창승;정회환;노광수;이종현;유형준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.721-725
    • /
    • 1996
  • The microfabricated test structures were used in order to evaluate the stress characteristics in films. The test structures were fabricated using surface micromachining technique, including HF vapor phase etching as an effective release method. The fabricated structures were micro strain gauge, cantilever-type vernier gauge and bridge for stress measurement, and cantilever for stress gradient measurement. The strain was measures by observing the deformation of the structures occurred after release etching and the amount of deformation can be detected by micro vernier gauge, which has gauge resolution of 0.2${\mu}{\textrm}{m}$. The detection principles and the degree of precision for the measured strain were also discussed. The characteristics of residual stress in LPCVD polysilicon films were studied using these test structures. The stress gradient due to the stress variation through the film thickness was calculated by measuring the deflection at the cantilever free end.

  • PDF

Micro Structure Fabrication Using Injection Molding Method (인젝션 몰딩 기술을 이용한 마이크로 구조물 성형)

  • Je T. J.;Shin B. S.;Chung S. W.;Cho J. W.;Park S. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.253-259
    • /
    • 2002
  • Micro cell structures with high aspect ratio were fabricated by injection molding method. The mold inserts had dimension $1.9cm\times8.3cm$ composed of a lot of micro posts and were fabricated by LIGA process. The size of the micro posts was $157{\mu}m\times157{\mu}m\times500{\mu}m$ and the gaps between two adjacent posts were $50{\mu}m$. Using Polymethylmethacrylate (PMMA) injection molding was performed. The key experimental variables were temperature, pressure, and time. By controlling these, good shaped mim cell structures with $50{\mu}m$ in wall thickness and $500{\mu}m$ in depth were obtained. In order to understand micro molding mechanism, shape changes of molded PMMA were studied with experimental variables. And the durability of mold insert was investigated, too. The results show that the most important factor in molding processes was the mold temperature that is closely related to the filling of the melt into the micro cavity. And the holding time before cooling showed a great effect on the quality of molded PMMA.

  • PDF

Experimental Investigation on the Blast Resistance of Fiber-Reinforced Cementitious Composite Panels Subjected to Contact Explosions

  • Nam, Jeongsoo;Kim, Hongseop;Kim, Gyuyong
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.29-43
    • /
    • 2017
  • This study investigates the blast resistance of fiber-reinforced cementitious composite (FRCC) panels, with fiber volume fractions of 2%, subjected to contact explosions using an emulsion explosive. A number of FRCC panels with five different fiber mixtures (i.e., micro polyvinyl alcohol fiber, micro polyethylene fiber, macro hooked-end steel fiber, micro polyvinyl alcohol fiber with macro hooked-end steel fiber, and micro polyethylene fiber with macro hooked-end steel fiber) were fabricated and tested. In addition, the blast resistance of plain panels (i.e., non-fiber-reinforced high strength concrete, and non-fiber-reinforced cementitious composites) were examined for comparison with those of the FRCC panels. The resistance of the panels to spall failure improved with the addition of micro synthetic fibers and/or macro hooked-end steel fibers as compared to those of the plain panels. The fracture energy of the FRCC panels was significantly higher than that of the plain panels, which reduced the local damage experienced by the FRCCs. The cracks on the back side of the micro synthetic fiber-reinforced panel due to contact explosions were greatly controlled compared to the macro hooked-end steel fiber-reinforced panel. However, the blast resistance of the macro hooked-end steel fiber-reinforced panel was improved by hybrid with micro synthetic fibers.