• Title/Summary/Keyword: micro screw

검색결과 60건 처리시간 0.019초

Detection and Quantification of Screw-Home Movement Using Nine-Axis Inertial Sensors

  • Jeon, Jeong Woo;Lee, Dong Yeop;Yu, Jae Ho;Kim, Jin Seop;Hong, Jiheon
    • The Journal of Korean Physical Therapy
    • /
    • 제31권6호
    • /
    • pp.333-338
    • /
    • 2019
  • Purpose: Although previous studies on the screw-home movement (SHM) for autopsy specimen and walking of living persons conducted, the possibility of acquiring SHM based on inertial measurement units received little attention. This study aimed to investigate the possibility of measuring SHM for the non-weighted bearing using a micro-electro-mechanical system-based wearable motion capture system (MEMSS). Methods: MEMSS and camera-based motion analysis systems were used to obtain kinematic data of the knee joint. The knee joint moved from the flexion position to a fully extended position and then back to the start point. The coefficient of multiple correlation and the difference in the range of motion were used to assess the waveform similarity in the movement measured by two measurement systems. Results: The waveform similarity in the sagittal plane was excellent and the in the transverse plane was good. Significant differences were found in the sagittal plane between the two systems (p<0.05). However, there was no significant difference in the transverse plane between the two systems (p>0.05). Conclusion: The SHM during the passive motion without muscle contraction in the non-weighted bearing appeared in the entire range. We thought that the MEMSS could be easily applied to the acquisition of biomechanical data on the knee related to physical therapy.

Crawling 방식을 이용한 관 탐사용 소형 로봇의 이동속도 해석 (Theoretical Velocity Analysis of Micro Robot Based on Crawling Locomotive Mechanism for Pipe Inspection Micro Robot)

  • 장기현;박현준;김병규
    • 대한기계학회논문집A
    • /
    • 제32권8호
    • /
    • pp.633-641
    • /
    • 2008
  • Recently, the necessity for diagnosis and management of pipes has emerged as the issue due to contamination of water supply generated by corrosion of pipes. Although inspection has been performed with industrial endoscopes, the method has limits for full diagnosis of pipes due to the lack of working range. As a solution for this problem, many locomotive mechanisms for a micro robot with endoscope functions were proposed. In this paper, we analyze the locomotive mechanism of crawling robot proposed as locomotive device for pipe inspection. Based on a mechanical modeling of motor and micro robot inside small pipe, the theoretical formula for velocity is obtained. This derived theoretical formula is demonstrated the feasibility through the comparison with experimental result. Also, we could find the most important element influencing the moving velocity of micro robot when the robot operates in small pipe. Consequently, it is expected that this study can supply useful information to design of crawling robot to move in small pipe.

이중서보제어루프를 통한 서보모터-압전구동기의 초정밀위치결정 시스템 (Ultra precision positioning system for Servo Motor-Piezo actualtor using dual servo loop)

  • 이동성;박종호;박희재
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.437-441
    • /
    • 1995
  • In this paper, the ultra precision positioning system for servo motor and piezo actuator using dual servo loop control has been developed. For positioning system having long distance with ultra precision, the combination of global stage and micro stage is required. Servo moter and ball screw are used as a master stage and piezo acuator as a fine stage. By using this system, an positional precision witin .+-. 30nm has been achieved at dual servo loop control. When using micro stage, an positional precision within .+-. 10nm has been achieved. This result can be applied to develop semiconductor equipment such as wafer stepper.

  • PDF

이중서보제어루프와 디지털 필터를 통한 서보모터-업전구동기의 초정밀위치결정 시스템 개발 (Ultra Precision Positining System for Servo Motor-piezo Actuator Using the Dual Servo Loop and Digital Filter Implementation)

  • 이동성;박종호;박희재
    • 한국정밀공학회지
    • /
    • 제16권3호통권96호
    • /
    • pp.154-163
    • /
    • 1999
  • In this paper, an ultra precision positioning system has been developed using dual servo loop control. For positioning system having long distance with ultra precision , the combination of global stage and micro stage was required. A servo motor based ball screw is used as a global stage and the piezo actuator as a micro stage. For the improvement of positional precision, the digital Chebyshev filter is implemented in the developed to dual servo system. Therefore, the positional repeatability has been achieved within ${\pm}$ 10 mm, and this technique can be applied to develop precision semiconductor equipments such as lithography steppers and probers.

  • PDF

미세 부품 성형을 위한 소형 마이크로 성형시스템 개발 및 재료의 변형 거동 고찰 (Development of a Miniaturized Microforming System and Investigation of Deformation Behavior of Material for the Production of Micro Components by Forming)

  • 남정수;박일구;이상원;김홍석
    • 한국정밀공학회지
    • /
    • 제29권11호
    • /
    • pp.1221-1227
    • /
    • 2012
  • As demands on micro-products increase significantly with raising functional integration and increasing complexity, microfoming attracts a lot of attention in the manufacture of micro-products. Since the conventional big forming systems are not adequate to achieve sufficient tolerances of micro-scale parts, it is necessary to reduce the scale of the forming equipment and devices. In addition, understandings on the size effects, which exist in the material behavior and process characterization of microforming processes, need to be expanded. In this study, a miniaturized forming system based on the ball screw and servo motor actuator was developed for the efficient micro-parts production. In addition, tensile tests and cylindrical upsetting experiments were performed to evaluate the performance of the microforming system and to investigate the flow stress and friction size effects in microforming processes.

10 nano-meter 분해능을 갖는 laser scale을 이용한 위치 결정 실험 (Experiment for Position Accuracy Using Laser Scale Unit with 10 Nano-Meter Resoultion)

  • 임선종;정광조;최재완
    • 한국정밀공학회지
    • /
    • 제17권1호
    • /
    • pp.21-26
    • /
    • 2000
  • This paper describes a positioning system for ultra-precision that will be utilized in semiconductor manufacturing field and precision machinery. This system is composed with laser scale unit with 10nm resolution, ball screw with LM guide, brushless DC servo motor, vibration isolator and is equipped in chamber for continuous measuring environment. The dynamic of table, the problem of servo control and the traceability for micro step motion are described. These data will be applied for getting more stable system with 50nm resolution.

  • PDF

내측연결 임플란트 시스템에서 고정체와 지대주 연결부의 적합에 관한 연구 (FIT OF FIXTURE/ABUTMENT INTERFACE OF INTERNAL CONNECTION IMPLANT SYSTEM)

  • 이흥태;정재헌
    • 대한치과보철학회지
    • /
    • 제42권2호
    • /
    • pp.192-209
    • /
    • 2004
  • Purpose : The purpose of this study was to evaluate the machining accuracy and consistency of implant/abutment/screw combination or internal connection type. Material and methods: In this study, each two randomly selected internal implant fixtures from ITI, 3i, Avana, Bicon, Friadent, Astra, and Paragon system were used. Each abutment was connected to the implant with 32Ncm torque value using a digital torque controller or tapping. All samples were cross-sectioned with grinder-polisher unit (Omnilap 2000 SBT Inc) after embeded in liquid unsaturated polyester (Epovia, Cray Valley Inc). Then optical microscopic and scanning electron microscopic(SEM) evaluations of the implant-abutment interfaces were conducted to assess quality of fit between the mating components. Results : 1) Generally, the geometry of the internal connection system provided for a precision fit of the implant/abutment into interface. 2) The most precision fit of the implant/abutment interface was provided in the case of Bicon System which has not screw. 3) The fit of the implant/abutment interface was usually good in the case of ITI, 3I and Avana system and the amount of fit of the implant/abutment interface was similar to each other. 4) The fit of the implant/abutment interface was usually good in the case of Friadent, Astra and Paragon system. The case of Astra system with the inclined contacting surface had the most Intimate contact among them. 5) Amount of intimate contact in the abutment screw thread to the mating fixture was larger in assembly with two-piece type which is separated screw from abutment such as Friadent, Astra and Paragon system than in that with one-piece type which is not seperated screw from abutment such as ITI, 3I and Avana system. 6) Amount of contact in the screw and the screw seat of abutment was larger in assembly of Friadent system than in asembly of Astra system of Paragon system. Conclusion: Although a little variation in machining accuracy and consistency was noted in the samples, important features of all internal connection systems were the deep, internal implant-abutment connections which provides intimate contact with the implant walls to resist micro-movement, resulting in a strong stable interface. From the results of this study, further research of the stress distribution according to the design of internal connection system will be required.

미세입자 분사가공용 시퀸스 제어가 가능한 2축 스테이지 개발에 관한 연구 (A Study on the Development of a 2-axis Stage with Sequence Control for Micro Particle Blast Machining)

  • 황철웅;이세한;왕덕현
    • 한국기계가공학회지
    • /
    • 제19권8호
    • /
    • pp.81-87
    • /
    • 2020
  • A stable rotational-to-linear motion transformation structure using a driving mechanism with 2 degrees of freedom was developed for an orthogonal mechanism to prevent the interference of each axis in 2D motion. In this mechanism, a step motor was used for precise position control. This structure was developed to maneuver workparts in micro particle blast machining experiments. To determine the real-time performance of micro particle blast machining, the control, input, and output were operated simultaneously and precise position control was implemented, using a timer interrupt with multiple execution codes. The two step motors obtained precise position control by removing backlash with a ball-screw mechanism. The device has menu-type control codes for user-friendliness, and real-time sequence control was simultaneously adopted for user control input.

초정밀 평면 X-Y 스테이지의 시뮬레이션 및 제어성능 평가 (Simulation and Control performance evaluation of Ultra-Precision Single Plane X-Y Stage)

  • 곽이구;김재열;한재호;김영석;안재신;노기웅
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.422-428
    • /
    • 2002
  • In this study, actuator, sensor, guide, power transmission element and control method are considered for ultra-precision positioning apparatus. Through previous process, single plane X-Y stage with ultra-precision positioning is manufactured. Global stage for the purpose of materialization with robust system, is combined by using AC servo motor and ball screw and rolling guide. And ultra-precision positioning system is developed by micro stage with elastic hinge type and piezo element. global servo and micro servo for the purpose of materialization positioning accuracy with nm(nanometer) are controlled simultaneously by using incremental encoder and laser interferometer as displacement measurement sensor. Through previous process, ultra-precision positioning system (100mm stroke and ${\pm}$ 10nm positioning accuracy) with single plane X-Y stage are materialized.

  • PDF

초정밀 평면 X-Y 스테이지의 시뮬레이션 및 제어성능 평가 (Simulation and Control performance evaluation of Ultra-Precision Single Plane X-Y Stage)

  • 박기형;김재열;곽이구
    • 한국공작기계학회논문집
    • /
    • 제11권5호
    • /
    • pp.65-72
    • /
    • 2002
  • In this study, actuator, sensor, guide, power transmission element and control method are considered for ultra-precision positioning apparatus. Through previous process, single plane X-Y stage with ultra-precision positioning is manufactured. Global stage for the purpose of materialization with robust system, is combined by using AC servo motor and ball screw and rolling guide. And ultra-precision positioning system is developed by micro stage with elastic hinge type and piezo element. global servo and micro servo for the purpose of materialization positioning accuracy with nm(nanometer) are controlled simultaneously by using incremental encoder and laser interferometer as displacement measurement sensor. Through previous process, ultra-precision positioning system(100mm stroke and $\pm$ l0nm positioning accuracy) with single plane X-Y stage are materialized.