• Title/Summary/Keyword: micro modeling

Search Result 438, Processing Time 0.032 seconds

Development of Performance Simulation Models for MGT (마이크로 가스터빈(MGT) 성능 시뮬레이션 모델 개발)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Rhim, Sang-Kyu;Kim, Jae-Hoon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.4
    • /
    • pp.52-62
    • /
    • 2008
  • All forecasts of a future energy demand anticipate an increase across the globe. With the increase of energy demand, the emission of $CO_2$ is also likely to increase by at least the same amount because energy supply will be based on fossil fuels, which is more apparent in a number of developing countries. In this context, the Micro Gas Turbine (MGT) is being considered as a promising solution. In order to propose a feasible concept of those technologies such as improving environmental effect and economics, we performed a sensitivity study for a biomass fueled MGT using a simulation model. The study consists of 1) the fundamental modeling using manufacturer's technical specifications, 2) the correction with the experimental data, and 3) the sensitivity study for system parameters. The simulation model was developed by PEPSE-GT 72, commercial steam/gas turbine simulation toolbox.

Evaluation of strength of waste material mixed concrete using digital image (디지털이미지를 이용한 폐기물 혼합 콘크리트의 강도 평가)

  • Yoon, Hyun-Suk;Lee, Ki-Ho;Park, Jun-Boum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1390-1395
    • /
    • 2005
  • To analyze the effects of oyster shell particles, inserted in the self-hardening matrix such as cement paste, on strength, homogenization analysis using micro structure was used to estimate and assess the apparent elastic modulus of oyster shell particle. DIB modeling technique was used to represent of the micro structure of oyster shell mixed concrete. The results showed that the apparent elastic modulus of LOS (large oyster shell particle) was changed with the amount of LOS inserted. In particular, when the amount of LOS was 200% of the weight of cement, the apparent elastic modulus of LOS tended to decrease rapidly. This could mean that the strength of oyster shell mixed concrete is much affected by LOS inserted material in mixed ratio of 200%.

  • PDF

Five-DOF Polymer Actuator Based on Dielectric Elastomer

  • Kwangmok Jung;Lee, Sangwon;Jongwon Kwak;Kim, Hunmo;Jaedo Nam;Jaewook Jeon;Park, Hyoukryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.78.3-78
    • /
    • 2002
  • In this paper, we present a five-DOF actuator based on dielectric elastomer. The actuator is designed for generating five DOFs motions to drive a micro camera steering module and provides all the functions for controlling CCD array such as focusing, pan and tilting. Basic modeling of the actuator is performed, and simulation works and experimental verifications are conducted, too. The camera steering module includes most parts necessary for driving the actuator such as a micro-controller and DC-DC converter, etc. It can be operated with a personal computer using only communication lines without external power supply. A prototype is developed and its performance is experimentally proved. $\textbullet$ artificial muscle, EAP, actuator.

  • PDF

Strongly-coupled Finite Element Method Approach to Multi-scale Modelingof Polycrystalline Solids (유한요소법을 이용한 다결정 고체의 복합스케일 모델링)

  • Han Tong-Seok;Dawson Paul R.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.531-534
    • /
    • 2006
  • A multi-scale (macro-micro) finite element framework for analysis of polycrystalline solids is suggested. The proposed frame work is strongly-coupled in a sense that the two scale calculation is performed at the same time. The issue of averaging micro-scale material stress and stiffness is addressed and a strategy is proposed. The proposed framework is implemented and applied to two examples having different geometries and loading modes. It is concluded that the proposed multi-scale framework can be used for more detailed and accurate analysis compared with the single-scale finite element analysis.

  • PDF

Design of polycrystalline 3C-SiC micro beam resonators with corrugation (주름진 다결정 3C-SiC 마이크로-빔 공진기의 설계)

  • Nguyen-Duong, The-Nhan;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.74-75
    • /
    • 2008
  • This work has suggested corrugation beam as a new structure for mechanical resonators. Micro beam resonators based on 3C-SiC films which have two side corrugations along the length of beams were simulated by finite-element modeling and compared to a flat rectangular beam with the same dimension. With the dimension of $36\times12\times0.5{\mu}m^3$, the flat cantilever has resonant frequency of 746 kHz. Meanwhile, this frequency reaches 1.252 MHz with the corrugated cantilever which has the same dimension with flat type but corrugation width of $6{\mu}m$ and depth of $0.4{\mu}m$. It is expected that mechanical resonators with corrugations will be very helpful for the research of sensing devices with high-resolution, high-performance oscillators and filters in wireless communications as well as measurement in basic physics.

  • PDF

Performance analysis of operators in a nuclear power plant control room using a task network model (직무 네트워크 모형을 이용한 원자력발전소 제어실 운전원들의 수행도분석)

  • 서상문;천세우;이용희
    • Proceedings of the ESK Conference
    • /
    • 1993.10a
    • /
    • pp.21-30
    • /
    • 1993
  • This paper describes the development of a simulation model of nuclear power plant operators including cognitive aspects by using a network modeling soft ware, Micro-SAINT (System Analysis of Integrated Networks of Tasks) for the analysis of operator performance. Network model description based on Micro-SAINT includes tasks, resources, precedence relations among tasks, flow of information and PSFs (Performance Shaping Factors) on task performance. We have tried to evaluate the performance with several performance measures such as the number of tasks allocated, relative time presure among operators within a shift, for the selected test accident scenarior; small-break LOCA (Loss of Coolant Accident) in a PWR (Pressurized Water Reactor) type nuclear power plant.

  • PDF

A dragonfly inspired flapping wing actuated by electro active polymers

  • Mukherjee, Sujoy;Ganguli, Ranjan
    • Smart Structures and Systems
    • /
    • v.6 no.7
    • /
    • pp.867-887
    • /
    • 2010
  • An energy-based variational approach is used for structural dynamic modeling of the IPMC (Ionic Polymer Metal Composites) flapping wing. Dynamic characteristics of the wing are analyzed using numerical simulations. Starting with the initial design, critical parameters which have influence on the performance of the wing are identified through parametric studies. An optimization study is performed to obtain improved flapping actuation of the IPMC wing. It is shown that the optimization algorithm leads to a flapping wing with dimensions similar to the dragonfly Aeshna Multicolor wing. An unsteady aerodynamic model based on modified strip theory is used to obtain the aerodynamic forces. It is found that the IPMC wing generates sufficient lift to support its own weight and carry a small payload. It is therefore a potential candidate for flapping wing of micro air vehicles.

Classification and visualization of primary trabecular bone in lumbar vertebrae

  • Basaruddin, Khairul Salleh;Omori, Junya;Takano, Naoki;Nakano, Takayoshi
    • Advances in biomechanics and applications
    • /
    • v.1 no.2
    • /
    • pp.111-126
    • /
    • 2014
  • The microarchitecture of trabecular bone plays a significant role in mechanical strength due to its load-bearing capability. However, the complexity of trabecular microarchitecture hinders the evaluation of its morphological characteristics. We therefore propose a new classification method based on static multiscale theory and dynamic finite element method (FEM) analysis to visualize a three-dimensional (3D) trabecular network for investigating the influence of trabecular microarchitecture on load-bearing capability. This method is applied to human vertebral trabecular bone images obtained by micro-computed tomography (micro-CT) through which primary trabecular bone is successfully visualized and extracted from a highly complicated microarchitecture. The morphological features were then analyzed by viewing the percolation of load pathways in the primary trabecular bone by using the stress wave propagation method analyzed under impact loading. We demonstrate that the present method is effective for describing the morphology of trabecular bone and has the potential for morphometric measurement applications.

The Study of Error Compensation for Repeatability Improvement of Precision Positioning System

  • Lee, Woogeun;Changsoo Han;Park, Hyeunseok;Lee, Kyeyoung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.66.6-66
    • /
    • 2001
  • In this paper, we studied the error compensation using an error budget method for repeatability improvement of the precision positioning system. The precision positioning system is developed for micro-pressing machine. We performed the force and displacement analysis about parts of the system. Proposed system determines the position and orientation of the materials manufactured by micro-pressing machine. It is consisted of x-y-z linear stages setting the position, and the gripper system setting the orientation. We executed kinematic and dynamic modeling of the whole precision positioning system. By generalizing the design variables, precision positioning system has the flexibility of material dimension. As we tried an error compensation using ...

  • PDF

A FE2 multi-scale implementation for modeling composite materials on distributed architectures

  • Giuntoli, Guido;Aguilar, Jimmy;Vazquez, Mariano;Oller, Sergio;Houzeaux, Guillaume
    • Coupled systems mechanics
    • /
    • v.8 no.2
    • /
    • pp.99-109
    • /
    • 2019
  • This work investigates the accuracy and performance of a $FE^2$ multi-scale implementation used to predict the behavior of composite materials. The equations are formulated assuming the small deformations solid mechanics approach in non-linear material models with hardening plasticity. The uniform strain boundary conditions are applied for the macro-to-micro transitions. A parallel algorithm was implemented in order to solve large engineering problems. The scheme proposed takes advantage of the domain decomposition method at the macro-scale and the coupling between each subdomain with a micro-scale model. The precision of the method is validated with a composite material problem and scalability tests are performed for showing the efficiency.