• Title/Summary/Keyword: micro machining

Search Result 851, Processing Time 0.03 seconds

Development of Machining Technology for Micro Dies and Molds (미세금형제작을 위한 가공기술개발)

  • 이응숙;신영재;강재훈;제태진;이재경;이현용;이상조;최헌종;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.1047-1050
    • /
    • 2000
  • As the progress of new industrial products or parts technology, the precise and fine machining technologies are needed more and more. Micro fabrication technology of these products are usally consisted of mechanical machining or MEMS technology. Direct machining by mechanical method is not applicable to mass production. MEMS technology also has several problems such as low mechanical strength, bad surface roughness and difficulty of 3 dimensional machining. In this study, we introduce several micro fabrication technology to make micro molds and dies and our project to develop these machining technology.

  • PDF

Micro Mold Machining Using EDM/ECM (방전/전해 가공을 이용한 미세금형가공)

  • Chung, D.K.;Shin, H.S.;Choi, S.H.;Kim, B.H.;Chu, C.N.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.75-78
    • /
    • 2007
  • Recently, the need for micro mold or micro mechanical parts has been rapidly increased. As feature size decreases, conventional machining processes show their limitation. Micro electrical discharging machining (EDM) and electrochemical machining (ECM) have many advantages in micro machining. They can be used to make structures of micro scale, or even nano scale size. In this paper, the application of micro EDM and ECM has been investigated.

  • PDF

Development of Micro-EDM Machine for Microshaft and Microhole Machining (미세 축ㆍ구멍 가공을 위한 미세방전가공기의 개발)

  • 김규만;최덕기;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.55-61
    • /
    • 1998
  • Recently, the needs of machining technologies of very small parts have been increasing with advent of micro-revolution. These technologies have mostly used the method applied to semi-conductor production process such as LIGA, etc. But they have serious difficulties to settle down in terms of workpiece materials, machining thickness, 3-dimensional structure. Therefore. mciro-machining technology using EDM(Electrical Discharge Machining) was proposed. It is very difficult to machine the micro-parts (microshaft, microhole) using conventional machining. Micro-machining using BDM can machine the micro-parts easily because it requires little machining force. This MEDM(Micro-EDM) need the capabilities to move a electrode and control a discharge energy precisely, and the gap control strategy to maintain the optimal discharge condition is necessary. Therefore, in this study, the new EDM machine with high precision motion stage and high-performance EDM device was developed. Using this MEDM machine, we have machined microshaft and microhole with various shapes and sizes.

  • PDF

A Study on the Micro-machining Technique for Fabrication of Micro Grooves (미세 홈 형성을 위한 마이크로 가공기술에 관한 연구)

  • 박정우;이은상;문영훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.918-921
    • /
    • 2000
  • Micro-machining, one of the non-traditional machining techniques, can achieve a wanted shape of the surface using metal dissolution with electrochemical reaction and can be applied to the metal such as high tension, heat resistance and hardened steel. The workpiece dissolves when it is positioned close to the tool electrode in electrolyte and the current is applied. Traditional machining has been used in the industries such as cutting, deburring, drilling and shaping. The aim of this work is to develop Micro-machining techniques for micro shape by establishing appropriate machining parameters of micro-machining

  • PDF

Micro Electrochemical Machining Using Insulated Electrode (절연 전극을 이용한 미세 전해 가공)

  • Park B.J.;Kim B.H.;Chu C.N.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.685-688
    • /
    • 2005
  • In the micro electrochemical machining (MECM) using ultra short pulses, the machining rate is closely related to the tool electrode area. The machining rate varies according to the machining depth or the immersion depth. When using insulated tool electrodes, those depths do not matter. In addition, micro structures with high machining depth can be fabricated because the machining characteristics do not vary with the machining depth. Another advantage of insulated electrodes is prevention of taper shape. Micro structures with high machining depth or high aspect ratio were fabricated using insulated tool electrodes.

  • PDF

Machining Error Compensation for Tool Deflection in Micro Slot-Cutting Processes for Fabrication of Micro Shapes (미세형상 가공을 위한 Micro Slot 가공에서의 공구변형에 의한 가공오차 보상)

  • Sohn, Jong-In;Yoon, Gil-Sang;Seo, Tae-Il
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.121-127
    • /
    • 2008
  • Micro end-milling has been becoming an important machining process to manufacture a number of small products such as micro-devices, bio-chips, micro-patterns and so on. Despite the importance of micro end-milling, many related researches have given grand efforts to micro end-milling phenomenon, for example, micro end-milling mechanism, cutting force modeling and machinability. This paper strongly concerned actual problem, micro tool deflection, which causes excessive machining errors on the workpiece. To solve this problem, machining error prediction method was proposed through a series of test micro cutting and analysis of their SEM images. An iterative algorithm was applied in order to obtain corrected tool path which allows reducing machining errors in spite of tool deflection. Experiments are carried out to validate the proposed approaches. In result, remarkable error reduction could be obtained.

Fabrication of 3-D Micro Structure and Micro Tool Using MEDM (미세 방전을 이용한 3차원 미세 구조물 및 미세 공구 제작)

  • Kim B. H.;Yi S. M.;Chu C. N.;Kang Y. H.;Choi T. H.;Park H. J.;Lee Y. S.
    • Transactions of Materials Processing
    • /
    • v.14 no.3 s.75
    • /
    • pp.251-256
    • /
    • 2005
  • 3-D micro structures and micro tools were fabricated using Micro Electrical Discharge Machining (MEDM). To make micro structures, micro electrical discharge milling process was applied. During micro electrical discharge milling, electrode (tool) worn in the both axial and radial direction. To compensate tool wear which has significant influence on machining accuracy, machining path overlapping was proposed. Machining characteristics of micro electrical discharge milling was investigated in considering of depth of cut and capacitance of discharge circuit. Micro complex shaped tools were also fabricated using REDM (reverse electrical discharge machining). Sacrificial electrodes were machined through electrical discharge milling process and were used as electrode to make micro tools. Using this process several micro tools shape of 'ㄷ', 'ㅁ' and 'o' were fabricated. With these complex shaped tools, micro machining was successfully applied repeatedly.

Fabrication of 3-D Micro Structure and Micro Tool Using MEDM (미세 방전을 이용한 3차원 미세 구조물 제작 및 미세 공구 제작)

  • Lee Y. S.;Kim B. H.;Yi S. M.;Chu C. N.;Kang Y. H.;Choi T. H.;Park H. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.11a
    • /
    • pp.255-259
    • /
    • 2004
  • 3-D micro structures and micro tools are fabricated using MEDM (Micro Electric Discharge Machining). To make micro structures, micro electro discharge milling process is applied. During micro electro discharge milling, electrode (tool) wears both axial and radial direction. To compensate tool wear which influences significantly machining accuracy, overlap machining path is proposed. Machining characteristics of micro electro discharge milling is investigated in considering of depth of cut and capacitance of discharge circuit. Micro complex shaped tools are fabricated using REDM (reverse electro discharge machining). Sacrificial electrode is machined through electro discharge milling process and is used as electrode to make micro tools. Using this process several micro tools shape of 'ㄷ', 'ㅁ' and 'o' are fabricated. With these complex shaped tools, micro machining is successfully applied repeatedly.

  • PDF

Fabrication of Micro-tool by Micro-EDM and Its Applications (방전 가공을 이용한 미세 공구 제작과 응용)

  • 김보현;김동준;이상민;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1902-1906
    • /
    • 2003
  • Micro-milling is an efficient method for fabricating micro structures because of its high machining rate compared with other non-conventional micro machining processes. But it is not easy to make a micro milling tool with less than 50 $\mu\textrm{m}$ in diameter by conventional machining. In this study, the characteristics of a micro milling tool fabricated by wire electrical discharge machining (WEDM) were studied. The workpiece is copper and stainless steel. The effects of some machining conditions such as feed rate, depth of cut, and a shape of tool were studied. The tools with D-shape and square shape in cross section were tested for machining micro grooves and 3D structures.

  • PDF

Micro Grooving of Glass Using Micro Abrasive Jet Machining (Micro Abrasive Jet Machining을 이용한 유리의 미세 홈 가공)

  • Choi, Jong-Soon;Park, Keong-Ho;Park, Dong-Sam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.178-183
    • /
    • 2001
  • Abrasive jet machining(AJM) process is similar to the sand blasting and effectively removes hard and brittle materials. AJM has applied to rough working such as debarring and rough finishing. As the need for machining of ceramics, semiconductor, electronic devices and LCD are increasing, micro AJM is developed, and has become the inevitable technique to micromachining. This paper describes the performance of the micro AJM in micro grooving of glass. Diameter of hole and width of line in grooving is 80${\mu}{\textrm}{m}$. Experimental results showed good performance in micro grooving of glass, but the size of machined groove increased about 2~4${\mu}{\textrm}{m}$. With the fine tuning of masking process and compensation of film wear. this micro AJM could be effectively applied to the micro machining of semiconductor, electronic devices and LCD.

  • PDF