• 제목/요약/키워드: micro lens

검색결과 304건 처리시간 0.024초

콘택트렌즈 재질 및 침착 단백질에 따른 균 흡착 정도와 다목적용액의 살균력 비교 (Comparisons of Adherence Level of Micro-organisms According to Contact Lens Materials and Protein Deposition and Disinfection Efficacy of Multipurpose Solution)

  • 성형경;김소라;박미정
    • 한국안광학회지
    • /
    • 제20권1호
    • /
    • pp.35-42
    • /
    • 2015
  • 목적: 콘택트렌즈 재질 및 렌즈에 침착된 단백질 종류에 따른 균의 흡착력을 비교하고 관리용품의 살균력 차이를 측정하고자 하였다. 방법: FDA 평가기준 및 방법인 Disinfection Efficacy Testing의 Part 2. Regimen Procedure For Disinfecting Regimens에 따라 균 흡착 및 관리용품의 살균력 측정실험을 실시하였다. 결과: 포도상구균을 제외한 녹농균, 세라티아균, 칸디다균은 etafilcon A 렌즈에 더 많이 흡착되었으며, 4종의 다목적용액은 칸디다균을 제외한 모든 균에서 거의 완벽한 살균력을 나타냈다. 눈물 단백질을 침착시킨 렌즈에서 세라티아를 제외한 모든 균은 알부민 침착 렌즈에서의 흡착이 많았으며, 다목적용액의 살균력은 라이소자임 침착 렌즈에 흡착된 균보다 알부민 침착 렌즈에 흡착된 균에서 높은 것으로 나타났다. 또한, 균의 종류에 따라 다목적 용액의 살균력이 달랐다. 결론: 균의 종류, 콘택트렌즈 재질, 침착된 눈물 단백질의 종류가 콘택트렌즈에 흡착되는 균의 양에 영향을 주며, 눈물 단백질의 침착은 다목적용액에 의한 살균력에 변화를 초래할 수 있음을 밝혔다. 이러한 살균력에 영향을 주는 요인에 의해 콘택트렌즈 위생상태가 달라지며 부작용 발생 여부가 영향을 받을 수 있음을 제안한다.

LIGA-reflow 응용 Micro-lens Pattern 도광판 금형 제작 (Micro-lens Patterned LGP Injection Mold Fabrication by LIGA-reflow Process)

  • 황철진;김종덕;정재완;하수용;이규현
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.241-244
    • /
    • 2004
  • Microlens patterned micro-mold fabrication method for Light Guiding Plate(LGP), kernel part of LCD-BLU(Back Light Unit), was presented. Instead of erosion dot pattern for LCP optical design, microlens pattern, fabricated by LIGA-reflow process, was applied. Optical pattern design method was also developed not only for negative pattern LGP, but also positive pattern LGP. In order to achieve flow balance during the micro-injection molding process and dimensional accuracy, two LGP pattern was made in one micro-mold.

  • PDF

공초점 현미경용 장초점 마이크로렌즈 제작 (Fabrication of Micro-Lens Array with Long Focal Length for Confocal Microscopy)

  • 김기홍;임형준;정미라;이재종;최기봉;이형석;도이미
    • 한국생산제조학회지
    • /
    • 제20권4호
    • /
    • pp.472-477
    • /
    • 2011
  • This paper shows the method of fabrication of a micro lens array comprised of a Nipkow disk used in a large-area, high-speed confocal microscopy. A Nipkow disk has two components, a micro lens array disk and a pinhole array disk. The microlens array focuses illumination light onto the pinhole array disk and redirects reflected light from a surface to a sensor. The micro lens which are positioned in order on a disk have a hemispheric shape with a few tens of micron in diameter, and can be fabricated by a variety of methods like mechanical machining, semiconductor process, replication process like imprinting process. This paper shows how to fabricate the micro lens array which has a long focal length by reflow and imprinting process.

다중빔 리소그래피를 위한 초소형 컬럼의 전자빔 광학 해석에 관한 연구 (Study on The Electron-Beam Optics in The Micro-Column for The Multi-Beam Lithography)

  • 이응기
    • 반도체디스플레이기술학회지
    • /
    • 제8권4호
    • /
    • pp.43-48
    • /
    • 2009
  • The aim of this paper is to describe the development of the electron-beam optic analysis algorithm for simulating the e-beam behavior concerned with electrostatic lenses and their focal properties in the micro-column of the multi-beam lithography system. The electrostatic lens consists of an array of electrodes held at different potentials. The electrostatic lens, the so-called einzel lens, which is composed of three electrodes, is used to focus the electron beam by adjusting the voltages of the electrodes. The optics of an electron beam penetrating a region of an electric field is similar to the situation in light optics. The electron is accelerated or decelerated, and the trajectory depends on the angle of incidence with respect to the equi-potential surfaces of the field. The performance parameters, such as the working distances and the beam diameters are obtained by the computational simulations as a function of the focusing voltages of the einzel lens electrodes. Based on the developed simulation algorithm, the high performance of the micro-column can be achieved through optimized control of the einzel lens.

  • PDF

초소형 블루레이 광 팍업 렌즈의 유리 성형에 관한 연구 (A study of glass molding the micro Blu-ray pick-up lens)

  • 박순섭;이기용;김형모;황연
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.164-167
    • /
    • 2006
  • Micro lens especially for optical pick up(Blu-ray) lens module is one of the key products for IT technology. Specific attention has been given to manufacturing of large radius lens but little to small radius less than 2mm diameter with N.A>0.8. This paper deals with a high precision glass molding technology for mass production of Blu-ray pick up lens. Ultra precisely machined tungsten carbide core and glass molding equipments are utilized for forming process. Evaluation was performed in terms of profile accuracy, surface roughness and thickness of fabricated glass lens.

  • PDF

A Study on the Mirror Grinding for Mold of a Small Aspherical Lens

  • Lee, Joo-Sang;Masaru Saeki;Tsunemoto Kuriyagawa;Katsuo Syoji
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권3호
    • /
    • pp.48-54
    • /
    • 2003
  • This paper deals with mirror grinding of a small-sized aspherical lens by a resin bonded diamond spherical wheel. Up to now, a spherical lens has been used for the lens of the optical communication optical part. However, recently, aspherical optical parts are mainly used in order to attempt the improvement in image quality and miniaturization of the optical device. It is possible to manufacture the aspherical lens which is presently being used in optical instrument through ultra-precision machining technology. Also, to realize compactness, efforts are being made to produce a micro aspherical lens, fur which the development of a high-precision, micro molding die is inevitable. Therefore, extensive research is being done on methods of producing a micro aspherical surface by high-precision grinding. In this paper, the spherical wheel was trued by cup-shaped truer and tool path was calculated by the radius of curvature of the wheel after truing and dressing. Then in the aspherical grinding experiment, WC material which is used as a melding die for the small-sized aspherical lens was ground. The results showed that a form accuracy of 0.1918 $\mu\textrm{m}$ P-V and a surface roughness of 0.064 $\mu\textrm{m}$ Rmax could be achieved.

소형 비구면 렌즈 금형의 경면 연삭 가공에 관한 연구 (A Study on the Mirror Grinding for Mold of a Small Aspherical Lens)

  • 이주상;좌백우;주천상원;장사극웅
    • 한국정밀공학회지
    • /
    • 제18권12호
    • /
    • pp.82-87
    • /
    • 2001
  • This paper deals with mirror grinding of a small-sized aspherical lens by the resin bonded diamond spherical wheel. Up to now, a spherical lens has been used for the lens of the optical communication optical part. However, recently, the aspherical optical parts are mainly used in order to attempt the improvement in image quality and miniaturization of the optical device. It is possible to manufacture the aspherical lens which is presently being used in optical instrument through ultra-precision machinery technology. Also, to realize compactability, efforts are being made to produce a micro aspherical lens, for which the development of a high-precision, micro molding die is inevitable. Therefore, extensive research is being done on methods of producing an micro aspherical surface by high-precision grinding. In this paper, the spherical wheel was trued by cup-type truer and tool path was calculated by the radius of curvature of wheel after truing and dressing. And then in the aspherical grinding experiment, WC material which is used as a molding die for the small-sized aspherical lens was ground. It results was that a form accuracy of 0.1918${\mu}m$ P-V and a surface roughness of 0.064${\mu}m$ Rmax.

  • PDF