• 제목/요약/키워드: micro hole machining

검색결과 104건 처리시간 0.025초

극세선용 압출다이의 미세구멍 가공기술 연구 (A study on the micro-hole machining for micro-extruding die)

  • 민승기;제태진;이응숙;이동주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.202-205
    • /
    • 2002
  • The micro-extruding die is a die for manufacturing of fine-wire by extruding process. The fine-wire made from the micro-extruding can be effectively applied to fields of semiconductor parts and medical parts etc. It is predicted that the demand of fine-wire in industry is more and more increasing. In this study $\Phi$ 50${\mu}{\textrm}{m}$ micro-drill which is coated with diamond is used for drilling of super micro-hole sues. For the machining of taper parts of entrance and exit, drill having $\Phi$ 9mm inclination angle 20$^{\circ}$ is used. This is useful for anti tool-breakage in drilling process. After micro-drilling, the polishing process by abrasive is carried out for increasing surface roughness.

  • PDF

가공액의 초음파 진동 및 절연 공구를 이용한 미세방전가공 (Micro Hole Machining by EDM Using Insulated Tool Combined with Ultrasonic Vibration of Dielectric Fluid)

  • 박민수;정도관;이강희;주종남
    • 한국생산제조학회지
    • /
    • 제20권2호
    • /
    • pp.180-186
    • /
    • 2011
  • This paper describes a micro electrical discharge machining (MEDM) technique that uses an insulated tool in combination with ultrasonic vibration to drill micro holes. As the machining depth becomes deeper, the dispersion of debris and circulation of the dielectric fluid are difficult to occur. Consequently, machining becomes unstable in the machining region and unnecessary electrochemical dissolution and secondary discharge sparking occur at the tool side face. To reduce the amount of unnecessary side machining, an insulated tool was used. Ultrasonic vibration was applied to the MEDM work fluid to better remove debris. Through these methods, a $1000\;{\mu}m$ thick stainless steel plate was machined by using a $73\;{\mu}m$ diameter electrode. The diameters of the hole entrance and exit were $96\;{\mu}m$ and $88\;{\mu}m$, respectively. It took only 351s to completely drill one hole.

Micro Abrasive Jet Machining을 이용한 유리의 미세 홈 가공 (Micro Grooving of Glass Using Micro Abrasive Jet Machining)

  • 최종순;박경호;박동삼
    • 한국정밀공학회지
    • /
    • 제18권10호
    • /
    • pp.178-183
    • /
    • 2001
  • Abrasive jet machining(AJM) process is similar to the sand blasting and effectively removes hard and brittle materials. AJM has applied to rough working such as debarring and rough finishing. As the need for machining of ceramics, semiconductor, electronic devices and LCD are increasing, micro AJM is developed, and has become the inevitable technique to micromachining. This paper describes the performance of the micro AJM in micro grooving of glass. Diameter of hole and width of line in grooving is 80${\mu}{\textrm}{m}$. Experimental results showed good performance in micro grooving of glass, but the size of machined groove increased about 2~4${\mu}{\textrm}{m}$. With the fine tuning of masking process and compensation of film wear. this micro AJM could be effectively applied to the micro machining of semiconductor, electronic devices and LCD.

  • PDF

와이어 펄스전해가공에서 반응표면분석법을 응용한 미세박판의 홀 가공 최적 조건에 관한 연구 (A Study on the Optimal Conditions of Hole Machining of Microplate by Application of Response Surface Methodology in Wire-Pulse Electrochemical Machining)

  • 송우재;이은상
    • 한국기계가공학회지
    • /
    • 제16권5호
    • /
    • pp.141-149
    • /
    • 2017
  • Due to the inaccuracy of micro-machining, various special processing methods have been investigated recently. Among them, pulse electrochemical machining is a promising machining method with the advantage of no residual stress and thermal deformation. Because the cross section of the wire electrode used in this study is circular, wire-pulse electrochemical machining is suitable for micro-hole machining. By applying the response surface methodology, the experimental plan was made of three factors and three levels: machining time, duty factor, and voltage. The regression equation was obtained through experiments. Then, by referring to the main effect diagram, we fixed the duty factor and machining time with little relevance, and solved the equation for the target 900 microns to obtain the voltage value. The results obtained from the response surface methodology were approximately those of the target value when the actual experiment was carried out. Therefore, it is concluded that the optimal conditions for hole processing can be obtained by the response surface methodology.

초음파 진동을 이용한 취성재료의 가공기술에 관한 연구 (A Study on Micro Ultrasonic machining for Brittle Material Using Ultrasonic vibration)

  • 이석우;최헌종;이봉구
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 금형가공 심포지엄
    • /
    • pp.245-252
    • /
    • 2002
  • Ultrasonic machining technology has been developed over recent years for the manufacture of cost-effective and quality-assured precision parts for several industrial application such as optics, semiconductors, aerospace, and automobile. Ultrasonic machining process is an efficient and economical means of precision machining of ceramic materials. The process is non-thermal, non-chemical and non-electric md hardly creates changes to the mechanical properties of the brittle materials machined. This paper describes the characteristics of the micro-hole of $Al_2O_3$ by ultrasonic machining with tungsten carbide tool. The effects of various parameters of ultrasonic machining, including abrasives, machining force and pressure, on the material removal rate, hole quality, and tool wear presented and discussed. The ultrasonic Machining of micro-holes in ceramics has been under taken and the machining mechanism in the ultrasonic machining of ceramics based on the fracture-mechanics concept has been analyzed.

  • PDF

Abrsive Jet Machining을 이용한 유리의 미세 홈 가공 (Micro Groove Cutting of Glass Using Abrasive Jet Machining)

  • 최종순;박경호;박동삼
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.963-966
    • /
    • 2000
  • Abrasive jet machining(AJM) process is similar to the sand blasting, and effectively removes hard and brittle materials. AJM has applied to rough working such as deburring and rough finishing. As the needs for machining of ceramics, semiconductor, electronic devices and LCD are increasing, micro AJM was developed, and became the inevitable technique to micromachining. This paper describes the performance of the micro AJM in micro groove cutting of glass. Diameter of hole and width of line in this groove cutting is 80${\mu}{\textrm}{m}$. Experimental results showed good performance in micro groove cutting in glass, but the size of machined groove was increased about 2~4${\mu}{\textrm}{m}$. therefore, this micro AJM could be effectively applied to the micro machining of semiconductor, electronic devices and LCD parts.

  • PDF

초음파 진동을 이용한 세라믹스의 미세 구멍 가공 기술 (A Study on Micro-hole machining for Ceramics(A1$_2$O$_3$) Using Ultrasonic vibration)

  • 이봉구;최헌종;이석우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.988-992
    • /
    • 2002
  • Ultrasonic machining technology has been developed over recent years for the manufacture of and quality-assured precision parts for several industrial application such as optics, semiconductors, aerospace, and automobile application. The past decade has seen a tremendous in the use of ceramics in structural application. The excellent thermal, chemical and wear resistance of these material can be realized because of recent improvements in the overall strength and uniformity of advanced ceramics. Ultrasonic machining, in which abrasive particles in slurry with water are presented to the work surface in the presence of an ultrasonic-vibrating tool, is process which should be of considerable interest, as its potential is not limited by the electrical or chemical characteristics of the work material, making it suitable for application to ceramics. This paper intends to further the understanding of the basic mechanism of ultrasonic machining for brittle material and ultrasonic machining of ceramics based in the fracture-mechanic concept has been analyzed.

  • PDF

미세 전해 가공에서 반경 방향 오버컷 예측을 위한 시뮬레이션 (Simulation of the Radial Overcut in Micro Electrochemical Machining)

  • 김보현;신홍식;오영탁;이강희;주종남
    • 한국정밀공학회지
    • /
    • 제28권2호
    • /
    • pp.251-256
    • /
    • 2011
  • The radial overcut in micro electrochemical machining was investigated. The prediction of overcut is important not only for the machining accuracy but also for the shape control of micro structures. In micro ECM, machining gap or overcut depends on electrolyte, pulse voltage, pulse duration and dissolution time etc. Understanding of electrochemical dissolution rate is necessary for the overcut prediction. In this paper, the radial overcut of micro electrochemical machining according to pulse duration and dissolution time was simulated using electrochemical principles and also experimentally estimated.

마이크로 드릴링을 이용한 미세압출다이 가공에 관한 연구 (A study on the machining of micro-extruding die using micro-drilling)

  • 민승기;제태진;이응숙;이동주
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.161-166
    • /
    • 2003
  • The micro-extruding die is a die for manufacturing of fine-wire by extruding process. The fine-wire made from the micro-extruding can be effectively applied to fields of semiconductor parts and medical parts etc. It is predicted that the demand of fine-wire in industry is more and more increasing. In this study $\phi50\mu m$ micro-drill which is coated with diamond is used for drilling of super micro-hole sizes. For the machining of taper parts of entrance and exit, drill having $\phi50\mu\textrm{mm}$ inclination angle $20^{\circ}$and angle $30^{\circ}$ is used. This is useful for anti tool-breakage and excessive too-wear in drilling process. After micro-drilling, the polishing process by diamond abrasive and polishing wood s carried out for increasing surface roughness.

  • PDF