• Title/Summary/Keyword: micro fiber

Search Result 534, Processing Time 0.03 seconds

Study on Auto Focusing System of Laser Beam by Using Fiber Confocal Method (파이버 공초점법을 이용한 레이저 빔 자동 초점 제어 장치에 관한 연구)

  • Moon, Seong-Wook;Kim, Jong-Bae;King, Sun-Hum;Bae, Han-Seong;Nam, Gi-Jung
    • Laser Solutions
    • /
    • v.9 no.3
    • /
    • pp.7-13
    • /
    • 2006
  • Auto focusing system to find optimized focal position of laser beam used for material process has been investigated by using fiber confocal method. Wavelength of laser diode (LD) and diameter of single-mode fiber are 780nm and $5.3{\mu}m$, respectively. Intensity distributions of beam reflected from the surface of mirror and silicon bare wafer have been observed in a gaussian form. Experimental results show that focal position obtained by LD is shifted from one observed from surface scribed by laser about $80{\mu}m$. It is due to the difference of wavelength and each divergence of between LD and laser used for material process. It is confirmed that auto focusing control system through position calibration has operated steadily.

  • PDF

A Study on the Alkali Hydrolysis of Sea-island PET Ultra-microfiber (해도형(海島型) PET 초극세섬유의 알칼리 가수분해에 관한 연구)

  • Seo, Mal Yong;Lee, Jun Hee;Ok, Chi Min;Cho, Seong Hun;Lee, Jong Woo;Cho, Ho Hyun
    • Textile Coloration and Finishing
    • /
    • v.25 no.4
    • /
    • pp.303-313
    • /
    • 2013
  • Alkali hydrolysis of sea-island PET 0.02denier microfiber were compared to those on the fabrics of the 0.06denier microfiber. In the dissolution of the sea component out of sea island type ultra-microfiber, it is important to determine the optimum division and divided material. Weight reduction of sea island ultra-micro sea island fiber was faster than regular PET about 10 times. Also 0.2denier sea-island ultra-micro sea island fiber has better color fastness (washing, friction, and daylight) than 0.06denier level sea-island ultra-microfiber. In this study, 0.2denier ultra-micro sea island fiber shows the possibility of high value product.

Assessment of flexural performance of hybrid fiber reinforced concrete. (하이브리드 섬유보강 콘크리트의 휨성능 평가)

  • Kim, Hag-Youn;Kim, Nam-Ho;Park, Choon-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.337-340
    • /
    • 2005
  • In this study, an effect of fiber blending on material property of Hybrid Fiber Reinforced Concrete (HFRC) was evaluated. Also, Compare and evaluates collating and mechanical property by the mixing rate of fiber for HFRC was determine. Modulus of rupture and strength effectiveness of Hybrid Fiber Reinforced Concrete mixed with macro-fiber(steel fiber) and micro-fiber(glass fiber, carbon fiber, cellulose fiber). Test result shows, in the case of mono fiber reinforced concrete. As the steel fiber mixing rate increases to 1.5$\%$, the strength effectiveness promotion rate rises. However, when is 2.0$\%$, strength decreases. In the case of hybrid fiber reinforcement concrete, synergy effect of micro fiber and macro fiber happens and higher Modulus of rupture and strength effectiveness appears than mono-fiber reinforcement concrete. Use of hybrid fiber reinforcement in concrete caused a significant influence on its fracture behavior; consequently, caused increase by mixing rate of steel fiber + carbon fiber and contributed by steel fiber + glass fiber, steel fiber + celluloid fiber in reinforcement effect in order. And was expose that steel fiber(1.5$\%$) + carbon fiber(0.5$\%$) is most suitable association.

  • PDF

Development of lightweight concrete using the PCM II : Investigation on Foam Volume/Fly Ash Relationship of Foam Concrete, and Effect of High Content Micro Polypropylene Fiber and Microstructure

  • Lim, Myung-Kwan;Enkhbold, odontuya;Choi, Dong-Uk
    • KIEAE Journal
    • /
    • v.15 no.4
    • /
    • pp.45-52
    • /
    • 2015
  • Purpose: Foam concrete is the concrete that contains large amount of air voids inside. In general, the density of foam concrete depends on parameters like water/binder ratio, foam volume, aggregate and pozzolan content, etc. Method: In this study, the effect of foam volume and fly ash content on dry density is investigated intensively in order to find the relationship between each parameter and their abilities to counteract with each other. According to the above information, though there are quite a number of studies on the effect micro fiber on foam concrete at low volume fractions, there is still lack of information especially on the high fiber content side. The objective of the second study is to investigate further on the use of micro fiber at higher volume fraction and fill in the lacking information. Beside from this study, the investigation of the effect of micro-fiber (polypropylene) to enhance the properties of foam concrete is also carried out. Result: Of the two variables that are investigated in this study, the foam volume and the fly ash content, show significant effect on the properties of foam concrete. The foam volume tends to decrease the density and strength of foam concrete. In the second part of our study, a large fibre volume fraction is proved to be able to evidently increase the flexural strength of foam concrete up to about 40% due to the effect of fibre bridging over the crack and a significant number of fibres that intercepts the crack surfaces. However, the compressive strength is found to decrease severely due to the occurrence of large pores as the result of fibre being added into concrete mixture.

The Effect of Pressure on the Properties of Carbon/Carbon Composites during the Carbonization Process

  • Joo, Hyeok-Jong;Oh, In-Hwan
    • Carbon letters
    • /
    • v.3 no.2
    • /
    • pp.85-92
    • /
    • 2002
  • 4D carbon fiber preforms were manufactured by weaving method and their carbon fiber volume fractions were 50% and 60%. In order to form carbon matrix on the preform, coal tar pitch was used for matrix precursor and high density carbon/carbon composites were obtained by high densification process. In this process, manufacture of high density composites was more effective according to pressure increasement. When densificating the preform of 60% fiber volume fraction with 900 bar, density of the composites reached at 1.90 $g/cm^3$ after three times processing. Degree of pressure in the densification process controls macro pore but it can not affect micro pore. During the carbonization process, micro pore of the preform were filled fully by once or twice densification processing. But micro pore were not filled easily in the repeating process. Therefore, over three times densification processing is the filling micro pore.

  • PDF

A Study on the Micro-mechanical Characteristics of Vacuum Hot Pressed Titanium Metal Matrix Composites (고온진공가압 티타늄 금속기 복합재료의 미시-기계적 특성에 관한 연구)

  • 하태준;김태원
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.207-210
    • /
    • 2003
  • Vacuum hot pressing has been used for the development of Ti-MMCs using foil-fiber-foil method, and subsequent micro-mechanical characteristics of the composites are evaluated by means of several experimental processes. As shown by the results, fiber strength degradation occurs during the consolidation, and particularly residual stresses results from the thermal expansion mismatch between fiber and matrix materials during cooling process are incorporated in the changes of mechanical properties of the composites. In industrial applications, the processing conditions avoiding micro-material failures are important together with the properties of finished products, and therefore should be included in the assesment of the material characterization.

  • PDF

Three-Dimensional Modeling of Void Formation During Resin Transfer Molding (RESIN TRANSFER MOLDING 공정에서의 기공 형성에 관한 3차원 모델링)

  • Bae, Jun-Ho;Kang, Moon-Koo;Lim, Seoug-Taek;Lee, Woo-Il
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.246-250
    • /
    • 2001
  • In resin transfer molding (RTM), resin is forced to flow through the fiber perform of inhomogeneous permeability. This inhomogeneity is responsible for the mismatch of resin velocity within and between the fiber tows. The capillary pressure of the fiber tows exacerbates the spatial variation of the resin velocity. The resulting microscopic perturbations of resin velocity at the flow front allow numerous air voids to form. In this study, a mathematical model was developed to predict the formation and migration of micro-voids during resin transfer molding. A transport equation was employed to account for the migration of voids between fiber tows. Incorporating the proposed model into a resin flow simulator, the volumetric content of micro-voids in the preform could be obtained during the simulation of resin impregnation.

  • PDF

A New Inter-group Handoff Scheme in Micro/Pico Cellular System using Optical Fiber Feeder

  • Chung Young uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.3A
    • /
    • pp.203-208
    • /
    • 2005
  • To solve the cost problem of micro/picocell system, the fiber-optic cellular system was proposed. In this system, all channel elements are managed in Central Station, not in each base station. Also, all channel elements in a system can be dynamically assigned when the Spectrum Delivery Switch (SDS) is used. In this paper, we propose and analyze a new intergroup handoff scheme in the fiber-optic cellular system. The proposed scheme supports handoff with keeping current channel. Performance is evaluated with respect to the blocking probability and the handoff refused probability in both systems with SDS and without SDS. The numerical results show that the proposed scheme provides better performance than conventional soft handoff scheme.

The Simulation of Micro Optical Cross Connect Based On Ball Lens (구형렌즈를 사용한 초소형 광 스위치에서의 Simulation)

  • Lee, Doo-Won;Kim, Ho-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.594-596
    • /
    • 2000
  • The best simulation condition for the fiber collimator that uses ball lenses was investigated. This kind of fiber collimator can be used in a Micro-Optical-Cross-Connects(MOXC). MOXC is composed of collimating ball lenses, micro mirrors and single-mode fibers. In order to design a MOXC, it is very important to calculate beam path, beam radius, divergence angle that determines the insertion loss of the MOXC. Since the beam profile from the fiber facet is not exact Gaussian profile, it was found that the simulation condition in which beam waist exists on the fiber facet, ignoring Numerical Aperture(NA), gives best agreement with the experimental results. Beam radii were measured with conventional knife edge method.

  • PDF

Natural Dyeing of Polyester Fabric with Microcapsules(II) - Scutellaria baicalensis - (마이크로캡슐에 의한 폴리에스테르 직물의 천연염색에 관한 연구(II) - 황금을 중심으로 -)

  • Min, Kyung-Hae
    • Fashion & Textile Research Journal
    • /
    • v.10 no.6
    • /
    • pp.1045-1050
    • /
    • 2008
  • Developing of high technology, productivity of the fiber product has being rapidly increased and also various kinds of advanced treatment process lead consumer's needs to more high functional, clean and healthy goods. Moreover, increasing in the concern of eco-friendly material and processing, it has been getting popular that the dyeing method like as using natural dyes is more eco-friendly and natural-friendly treatment process. The method, used in this study, adhesion by binding with micro-capsulized natural material to fabric has low change in quality by external influence and high ability in spray effect by broken capsule which comes to pressure and friction when it dressed. Also it has wide application from natural fiber to synthetic fiber. The purpose of this study is development of multi-functional synthetic material with micro-capsulized Scutellaria baicalensis on PET. Moreover, it was driven by comparison of colormetric properties and fastness between regular dip-dyeing method and binding with micro-capsulized material method. Dye ability was arranged mostly low exhaustion but the PET treated by micro-capsule was more or less better than the dip-dyeing PET. Through the SEM(Scanning Electron Microscope) of PET treated by micro-capsule, it has good residence of capsules even after 5 or 10 times washing. Wash and light fastness was arranged some different grade by each condition but mostly high achievement and the micro-capsulized PET was more improved than regular dip-dyed PET.