• 제목/요약/키워드: micro cutting fabrication

검색결과 38건 처리시간 0.026초

기계적인 가공방법에 의한 마이크로 렌즈 금형가공 (The Micro Lens Mold Processing in Mechanical Fabrication Method)

  • 정재엽;이동주;제태진;최두선;이응숙;홍성민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1885-1888
    • /
    • 2003
  • As high technology industries such as IT and display have developed, demand for application parts of micro lens and lens array has been extremely increasing. According to these trends, many researchers are studying on the fabrication technology for parts of the micro lens by a variety of methods such as MEMS, Lithography, LIGA and so on. In this paper, we have performed researches related to ultra precision micro lens, lens array mold and fabrication of Lenticular lens mold for three-dimensional display by using mechanical micro end-milling and fly-cutting fabrication method. Tools used in this research were a diamond tool of R 150$\mu\textrm{m}$. Cutting conditions set up feed rate, spindle revolution. depth of cut and dwell time as variables. And we analyzed surface quality variation of the processed products according to the cutting conditions, and then carried out experiments to search the optimum conditions. Through this research, we have confirmed that we can fabricate the ultra precision micro lens mold with surface roughness Ra=20nm and the holographic lens mold by using micro end-milling and fly-cutting fabrication method. Furthermore, we demonstrated problems happened in the fabrication of the micro lens and established the foundation of experimental study for formulating its improvement plan.

  • PDF

기계적 미세 가공 시스템 구성 및 응용 연구 (A Study on the Mechanical Micro Machining System set-up and Applications)

  • 제태진;이응숙;최두선;이선우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.934-937
    • /
    • 2001
  • It is well-known that the micro fabrication technology of micro parts are the high energy beam or silicon-based micro machining method such as LIGA Process, Laser machining, photolithography and etching technology. But, for fabricating complex 3-D structure it is better to use mechanical machining. This machining method by the mechanical machine tool with nanometer accuracy is getting attention in some field-especially micro optics machining such as grating, holographic lens, micro lens array, fresnel lens, encoder disk etc.. In this study, we survey the micro fabrication by mechanical cutting method and set up the mechanical micro machining system. And we carried out micro cutting experiments for micro parts with v-shape groove.

  • PDF

미세 엔드밀에 의한 마이크로 샤프트 가공기술 연구 (Study on Micro Machining for Micro Shafts using micro endmill)

  • 제태진;이응숙;이종찬;최환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.181-184
    • /
    • 2002
  • In these day, fabrication technologies for micro parts become more important with the increase of interest on microsystem and developed through the various approaches in the whole world. Among these technologies; micro mechanical machining is one of the most effective methods for the fabrication of micro parts. In this study, we fabricated micro shafts using micro endmill and micromachining system and measured the cutting force at the process. Also, Based on the data, we simulated the deformation of micro shafts due to the cutting force. Through the simulation results, it was verified that the cutting force at the process is enough to cause dimensional error at the micro shafts.

  • PDF

집속이온빔(Focused Ion Beam)에 의한 단결정 다이아몬드 공구의 마이크로/나노스케일 절삭공구 형상 제작 (Fabrication of Micro/nanoscale Cutting Tool Geometry of Single Crystal Diamond Tool by Focused Ion Beam)

  • 백승엽;장성민
    • 한국정밀공학회지
    • /
    • 제31권3호
    • /
    • pp.207-213
    • /
    • 2014
  • A study was carried out to fabricate the cutting tool geometry with micro/nanoscale on the single crystal diamond tool by using the FIB. The FIB technique is an ideal tool for TEM sample preparation that allows for the fabrication of electron-transparent foils. The FIB is appropriate techniques to sample and subsequently define the chemical composition and the structural state of mineral inclusion on the micro/nanoscale. The combination of FIB with a SEM allows for 3D information to be obtained from samples including 3D imaging. Cutting strategies were demonstrated to improve the performance of cutting tool geometry and to generate high aspect ratio micro cutting tool. A finely focused beam of 30keV Ga+ ions was used to mill cutting tool shapes for various micro patterns. Therefore FIB sputtering is used to shape a variety of cutting tools with dimensions in the $1-5{\mu}m$ range and cutting edge radii of curvature of under 50nm.

초경 그린파트 마이크로 절삭가공 특성 분석 (Investigation of Micro Cutting Characteristics for Tungsten-Carbide Green Part)

  • 김건희;정우철;윤길상;허영무;권영삼;조명우
    • 소성∙가공
    • /
    • 제19권3호
    • /
    • pp.191-196
    • /
    • 2010
  • Tungsten-carbide as typical difficult-to-cut material has excellent mechanical properties such as high thermal resistivity, mechanical strength and chemical durability. However, it is next to impossible for tungsten-carbide to be fabricated the needed parts by cutting process. In this study, for establishing the micro fabrication method of tungsten-carbide for micro injection or compression molding core, the investigation on micro cutting characteristics of tungsten-carbide green part which is made by powder injection molding process and easy to cut relatively was performed. For this, micro endmilling experiments of tungsten-carbide green part were performed according to various cutting conditions. Finally, the wear trend of micro endmill and the appearance of micro rib according to feed-rate and cutting depth per step were analyzed through SEM images of micro cutting feature and microscope images of micro tools.

미세형상 가공을 위한 Micro Slot 가공에서의 공구변형에 의한 가공오차 보상 (Machining Error Compensation for Tool Deflection in Micro Slot-Cutting Processes for Fabrication of Micro Shapes)

  • 손종인;윤길상;서태일
    • 한국공작기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.121-127
    • /
    • 2008
  • Micro end-milling has been becoming an important machining process to manufacture a number of small products such as micro-devices, bio-chips, micro-patterns and so on. Despite the importance of micro end-milling, many related researches have given grand efforts to micro end-milling phenomenon, for example, micro end-milling mechanism, cutting force modeling and machinability. This paper strongly concerned actual problem, micro tool deflection, which causes excessive machining errors on the workpiece. To solve this problem, machining error prediction method was proposed through a series of test micro cutting and analysis of their SEM images. An iterative algorithm was applied in order to obtain corrected tool path which allows reducing machining errors in spite of tool deflection. Experiments are carried out to validate the proposed approaches. In result, remarkable error reduction could be obtained.

마스크에 대한 기계적 가공을 이용한 단결정 실리콘의 미세 패턴 가공 (Selective Removal of Mask by Mechanical Cutting for Micro-patterning of Silicon)

  • 진원혁;김대은
    • 한국정밀공학회지
    • /
    • 제16권2호통권95호
    • /
    • pp.60-67
    • /
    • 1999
  • Micro-fabrication techniques such as lithography and LIGA processes usually require large investment and are suitable for mass production. Therefore, there is a need for a new micro-fabrication technique that is flexible and more cost effective. In this paper a novel, economical and flexible method of producing micro-pattern on silicon wafer is presented. This method relies on selective removal of mask by mechanical cutting. Then micro-pattern is produced by chemical etching. V-shaped grooved of about 3 ${\mu}m$ wide and 2 ${\mu}m$ deep has been made on ${SiO_2}m$ coated silicon wafer with this method. This method may be utilized for making microstructures in MEMS application at low cost.

  • PDF

연질재료의 마이크로 구형렌즈금형 가공특성에 관한 연구 (A Study on the Manufacturing Characteristics for Micro Spherical Lens Mold of Soft Materials)

  • 홍성민;이동주;제태진;최두선;이응숙
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1466-1469
    • /
    • 2004
  • Micro spherical lens mold processing method based on mechanical one completes a spherical shape by setting a diamond tool of hundreds $\mu$m radius on spins with high speed and then using Z-axis vertical feeding motion like the fabrication of micro drilling. In this method, we can see unprocessed parts shaped like cylinder and cone and check increasing chatter marks and burrs by setting errors of the central axis of rotation on the edge of the tool. That is why this method doesn't suit for the optical lens mold. In this paper presents unprocessed parts are disappeared and chatter marks and burrs are decreased from centre of the lens after using Run-out measuring and setting system on run-out occurred from setting tool. Also the fabrication characteristics of 6:4 Brass, A1601, PMMA are compared and analyzed, establishing the optimum machining condition on each material.

  • PDF

전해 연속 드레싱을 이용한 마이크로 공구 제작 (A Study on the Micro Tool Fabrication using Electrolytic In-process Dressing)

  • 이현우;최헌종;이석우;최재영;정해도
    • 한국정밀공학회지
    • /
    • 제19권12호
    • /
    • pp.171-178
    • /
    • 2002
  • With increasing the needs for micro and precision parts, micro machining technology using micro tools has been studied to fabricate a small part with high density such as electronics, optics, communications, and medicine industry more than before. Though these micro tools have developed rapidly, it is difficult to apply them to micro fabrication technologies, because of the inherent manufacturing. In this study, micro tools (WC) to produce micro structures and parts were manufactured by cylindrical grinding machine employing ELID (Electrolytic In-process Dressing) technique and the micro tools are fabricated as square shape with the dimension less than 100${\mu}{\textrm}{m}$. With the micro tools on the same machine, characteristics of micro grooving and drilling are evaluated. Also we compare normal micro machining with ultrasonic micro machining on the vibration table. It is confirmed that the developed micro tools are fully applicable to micro grooving, micro drilling and free form cutting.

다이아몬드 마이크로 블레이드 제조에 있어 부피비의 관점에서 본 윤활제 첨가 효과 (Effect of Lubricant Addition in Terms of Volume Fraction on Fabrication of Cu/Sn Bonded Diamond Micro Blades)

  • 문종철;김송희
    • 한국표면공학회지
    • /
    • 제43권1호
    • /
    • pp.41-45
    • /
    • 2010
  • The effect of $MoS_2$ and graphite content on wear resistance and mechanical properties of Cu/Sn bonded diamond micro blades was comparatively investigated in terms of volume and weight fraction. For the evaluation of endurance and cutting performance, instantaneous electric power consumption and cumulative wear loss during cutting glass work piece at constant velocity were measured with the micro blades of the wide range of lubricant content. The energy consumption of blades for glass cutting decreased with the content of lubricants. Wear amount of blade in volume increased with the amount of lubricant addition. It was found to be relevant to the decrease in flexural strength and hardness with the amount of lubricants. With the same amount of lubricant content in volume fraction $MoS_2$ showed superiority in mechanical properties and cutting performance than graphite while graphite could result in stronger effect on lowering electric consumption during cutting work piece for the same weight percent fraction than $MoS_2$ because of lower density.