• 제목/요약/키워드: micro controller system control

검색결과 245건 처리시간 0.032초

CRDI용 인젝터 드라이버 제작과 성능시험 (The Fabrication and Trial Performance of Injector Driver for CRDI)

  • 김상암;왕우경;김온
    • 동력기계공학회지
    • /
    • 제17권2호
    • /
    • pp.38-45
    • /
    • 2013
  • In this study, for carrying out the spray and combustion experiment using a Common Rail Direct Injection(CRDI) system, the controller was fabricated to drive a high speed camera, a injector and a laser beam sequentially at a low cost. CB280 module of one-chip micro processer was used for the controller. In order to confirm responsibility and utility of the controller, the current drive performance, the spray behavior and the injection rate were tested and analyzed under various experimental conditions. As this research results, we found that the fabricated controller was able to control the devices for the spray experiment precisely with the input value in program and it had the dynamic load responsibility and repetition. Also, we found that the injection rates of our experimental results were higher than those of others at the same injection pressure and the controller connected with the laser system and the data acquisition system had validity for carrying out the spray visualization experiment.

초정밀 평면 X-Y 스테이지의 시뮬레이션 및 제어성능 평가 (Simulation and Control performance evaluation of Ultra-Precision Single Plane X-Y Stage)

  • 박기형;김재열;곽이구
    • 한국공작기계학회논문집
    • /
    • 제11권5호
    • /
    • pp.65-72
    • /
    • 2002
  • In this study, actuator, sensor, guide, power transmission element and control method are considered for ultra-precision positioning apparatus. Through previous process, single plane X-Y stage with ultra-precision positioning is manufactured. Global stage for the purpose of materialization with robust system, is combined by using AC servo motor and ball screw and rolling guide. And ultra-precision positioning system is developed by micro stage with elastic hinge type and piezo element. global servo and micro servo for the purpose of materialization positioning accuracy with nm(nanometer) are controlled simultaneously by using incremental encoder and laser interferometer as displacement measurement sensor. Through previous process, ultra-precision positioning system(100mm stroke and $\pm$ l0nm positioning accuracy) with single plane X-Y stage are materialized.

BIPV 냉각시스템을 위한 자기동조 PI 온도제어 (Self Tuning PI Temperature Control for BIPV Cooling System)

  • 김도연;고재섭;최정식;정병진;백정우;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1080_1081
    • /
    • 2009
  • This paper proposes a cooling system using self tuning PI controller for improving the output of BIPV module. The temperature characteristics in regard to improving the output of BIPV system has rarely been studied up to now but some researchers only presented the method using a ventilator. The cooling system efficiency of BIPV module applied to a ventilator mainly depends on the weather such as wind and insolation etc. Because the cooling system of BIPV module using a ventilator is so sensitive, that is being set off by wind speed at all time but is unable to operate in the nominal operating cell temperature(NOCT) which is able to make the maximum output. The paper proposes the cooling system using thermoelectron by self tuning PI controller so as to solve such problems. The thermoelectron control of self tuning PI controller can be controlled independently in the outside environment because that is performed by micro-controller. The temperature control of thermoelectron, also, can be operated around NOCT through algorism of the temperature control. Therefore, outputs of the whole system increase and the efficiency rises. The paper demonstrates the validity of proposed method by comparing the data obtained through a experiment of the cooling method of BIPV using a ventilator and proposed thermoelectron

  • PDF

Development of Chip-based Precision Motion Controller

  • Cho, Jung-Uk;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1022-1027
    • /
    • 2003
  • The Motion controllers provide the sophisticated performance and enhanced capabilities we can see in the movements of robotic systems. Several types of motion controllers are available, some based on the kind of overall control system in use. PLC (Programmable Logic Controller)-based motion controllers still predominate. The many peoples use MCU (Micro Controller Unit)-based board level motion controllers and will continue to in the near-term future. These motion controllers control a variety motor system like robotic systems. Generally, They consist of large and complex circuits. PLC-based motion controller consists of high performance PLC, development tool, and application specific software. It can be cause to generate several problems that are large size and space, much cabling, and additional high coasts. MCU-based motion controller consists of memories like ROM and RAM, I/O interface ports, and decoder in order to operate MCU. Additionally, it needs DPRAM to communicate with host PC, counter to get position information of motor by using encoder signal, additional circuits to control servo, and application specific software to generate a various velocity profiles. It can be causes to generate several problems that are overall system complexity, large size and space, much cabling, large power consumption and additional high costs. Also, it needs much times to calculate velocity profile because of generating by software method and don't generate various velocity profiles like arbitrary velocity profile. Therefore, It is hard to generate expected various velocity profiles. And further, to embed real-time OS (Operating System) is considered for more reliable motion control. In this paper, the structure of chip-based precision motion controller is proposed to solve above-mentioned problems of control systems. This proposed motion controller is designed with a FPGA (Field Programmable Gate Arrays) by using the VHDL (Very high speed integrated circuit Hardware Description Language) and Handel-C that is program language for deign hardware. This motion controller consists of Velocity Profile Generator (VPG) part to generate expected various velocity profiles, PCI Interface part to communicate with host PC, Feedback Counter part to get position information by using encoder signal, Clock Generator to generate expected various clock signal, Controller part to control position of motor with generated velocity profile and position information, and Data Converter part to convert and transmit compatible data to D/A converter.

  • PDF

전력선모뎀 및 조광제어 안정기를 이용한 400W Metal Halide Lamp의 조광제어 시스템 개발 (Development of Dimming control system for 400W Metal Halide Lamp by Electronic Ballast and Power Line Modem)

  • 박종연;최왕섭
    • 산업기술연구
    • /
    • 제29권B호
    • /
    • pp.193-198
    • /
    • 2009
  • In this paper, we developed remote dimming control system of electronic ballast for 400W metal halide lamp. This ballast could limit ignition current and soft start-up technique by the inverter with LCsCp resonance tank. The dimming circuit can dim from 400W to 200W by varying of the inverter switching frequency. The PLM consists of coupling circuit, BPF(Band-Pass Filter), FSK(Frequency Shift Keying) Modem and ${\mu}$-controller(Micro Controller). By coupling electronic ballast with PLM, the system that able to dimming the lamp through PLM is demonstrated by experimental results.

  • PDF

DC 모터를 이용한 마스트 암의 특성에 관하여 (On a Characteristics of Mast Arm Using DC Motor)

  • 문진수;김철우
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2007년도 춘계학술대회 논문집
    • /
    • pp.295-299
    • /
    • 2007
  • Biped robot requires that an energy source and a control part should be installed on the body to realize active system. So, we choose the DC motor having high torque in compact size in this study. In the DC motor serve system, we choose power amplifier with analog configuration, developed the module combined the controller and the driver. We applied this module to robot actuator and studied the response characteristics in an action and a return. Main controller with serve system, loading PIC micro controller, can be load on the robot with light weight.

  • PDF

마이크로 컨트롤러를 이용한 LED 통신의 선택적 빔 포밍 시스템 구현에 관한 연구 (A study on implementation of beam forming system for LED communication using micro controller)

  • 이정훈;김찬;차재상
    • 한국위성정보통신학회논문지
    • /
    • 제7권2호
    • /
    • pp.25-29
    • /
    • 2012
  • 본 논문에서는 스텝핑 모터와 연동하여 방향 제어되는 LED 빔 포밍 통신 시스템을 HW로 구현하였다. ATMega1284 MCU를 이용하여 제어 보드를 구성하였으며, PC와 연결되는 RS232 IO와 스텝핑 모터 구동 보드 제어용 포트(Port)를 이용하여 외부 인터페이스를 구성하였다. 스텝핑 모터는 200 PWM으로 360도 회전하고 동시에 반경이 커지는 아르키메디스의 소용돌이(Archimedian Spiral) 방식을 적용하여 목표하는 지점을 선택적으로 조명할 수 있도록 하였다. 이 빔 포밍은 RS232와 연결된 PC 툴(tool)에 의해서 제어되며, ATMega1284 MCU 보드가 호스트(host) 역할을 하였다. 빔 포밍의 동작은 실제 구현된 HW/SW 기반으로 그 유용성을 검증하였다.

한쌍의 압전형 구동기를 이용한 구조물의 능동 미소 진동 제어 (Active Micro-Vibration Control of a Structure by Using a Pair of Piezoelectric Actuators)

  • 김미경;지원호;이종원
    • 소음진동
    • /
    • 제3권4호
    • /
    • pp.373-382
    • /
    • 1993
  • Active micro-vibration control of a structure, which simulates a stepper device, is performed using a pair of piezolectric actuators. The control aims at reducing the translational and rotational vibrations of the upper plate when the base is subject to seismic disturbance and the upper plate undergoes impulsive transient motion. Using the experimentally determined model, derivative control scheme is adopted so that the damping of the closed-loop system is effectively increased. It is found that the predicted control performance is in good agreement with the experimental results. Finally, the limit cycle phenomenon due to the controller voltage saturation is compared with the simulation.

  • PDF

Power Conditioning for a Small-Scale PV System with Charge-Balancing Integrated Micro-Inverter

  • Manoharan, Mohana Sundar;Ahmed, Ashraf;Seo, Jung-Won;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1318-1328
    • /
    • 2015
  • The photovoltaic (PV) power conditioning system for small-scale applications has gained significant interest in the past few decades. However, the standalone mode of operation has been rarely approached. This paper presents a two-stage multi-level micro-inverter topology that considers the different operation modes. A multi-output flyback converter provides both the DC-Link voltage balancing for the multi-level inverter side and maximum power point tracking control in grid connection mode in the PV stage. A modified H-bridge multi-level inverter topology is included for the AC output stage. The multi-level inverter lowers the total harmonic distortion and overall ratings of the power semiconductor switches. The proposed micro-inverter topology can help to decrease the size and cost of the PV system. Transient analysis and controller design of this micro-inverter have been proposed for stand-alone and grid-connected modes. Finally, the system performance was verified using a 120 W hardware prototype.

DSP(TMS320C50) 칩을 사용한 산업용 로봇의 적응-신경제어기의 실현 (Implementation of the Adaptive-Neuro Controller of Industrial Robot Using DSP(TMS320C50) Chip)

  • 김용태;정동연;한성현
    • 한국공작기계학회논문집
    • /
    • 제10권2호
    • /
    • pp.38-47
    • /
    • 2001
  • In this paper, a new scheme of adaptive-neuro control system is presented to implement real-time control of robot manipulator using Digital Signal Processors. Digital signal processors, DSPs, are micro-processors that are particularly developed for fast numerical computations involving sums and products of measured variables, thus it can be programmed and executed through DSPs. In addition, DSPs are as fast in computation as most 32-bit micro-processors and yet at a fraction of therir prices. These features make DSPs a viable computational tool in digital implementation of sophisticated controllers. Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust perfor-mance for application of robot control. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method.The proposed adaptive-neuro control scheme is illustrated to be a efficient control scheme for the implementation of real-time control of robot system by the simulation and experi-ment.

  • PDF