• Title/Summary/Keyword: micro column

Search Result 122, Processing Time 0.037 seconds

Flow Properties of Micro Column Packed with Perfusive Particles (투과성 입자로 이루어진 미세 칼럼의 유동 특성)

  • Kim, Duck-Jong;Hwang, Yun-Wook;Park, Sang-Jin;Heo, Pil-Woo;Yoon, Eui-Soo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.89-93
    • /
    • 2005
  • In this work, perfusive particles are used to form a micro column in a microfluidic chip and flow properties of the micro column are investigated. The packing flow velocity and the column/particle size ratio are shown to be important parameters affecting the packing density of the micro column. Experimental results show that the effect of the column/particle size ratio on the flow resistance of the micro column is negligible. This contrasts with previous works on the effect of the column/particle size ratio on the total pressure drop across the column.

  • PDF

Scanning large area with a micro-electron column (마이크로 전자칼럼을 이용한 대면적 스캔)

  • Jang, Won-Kweon;Park, Seong-Soon;Kim, Ho-Seob
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.182-183
    • /
    • 2007
  • In large area scanning with a micro-electron column, the optimal operation condition for the best visibility was studied. A micro-electron column can realize nearly unlimited scanning size with distribution of micro-electron columns, therefore applicable to large sized SEM or VSEM. The maximum scanning size with a micro-electron column was about $200cm^2$ when only one deflector was employed. However, a double deflector equipped micro-electron column provided 1.7 times larger scanning area with the same visibility as that of one deflector.

  • PDF

Injection Molding Experiments for Small Diameter Column (미소 원주의 사출 성형 실험)

  • 제태진;이응숙;김재구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.85-88
    • /
    • 1995
  • Recently, the micro mold maching techining technology is developed by means of the mechanical and high energy beam process. It is possible to make the micro structure mold with high aspect ratio by the LIGA technology. This mode is used for mass production of plastic parts by the micro injection molding method. In this study, we intend to research on the basic technology of micro injection molding. As the result, we developed the injection molding technology for small column plastic parts which diameter is 500 .mu. m and 200 .mu. m respectively with wbout aspect ratio 20.

  • PDF

Analysis of Orientation and Distribution of Steel Fiber in Fiber Reinforced Concrete Column by Micro-CT Scanning (Micro-CT 스캐닝을 통한 섬유보강 콘크리트 기둥내부 강섬유의 배향성 및 위치분포 분석)

  • Park, Tae-Hoon;Suh, Heong-Won;Bae, Sung-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.23-24
    • /
    • 2019
  • In this study, analysis of steel fiber orientation and distribution inside fiber reinforced concrete was performed using micro-CT scanning technology. Samples were extracted from the column according to its height and distance from the mold. Samples were scanned in order to attain the image of steel fibers then region of interest were obtained by binarization process. By calculating the principle moment of inertia of each fiber, direction vector, scale, center postion, volume, and surface area were gained in order to analyze the orientation and distribution. Most of the fibers inside the column tended to be perpendicular to the main axis of the column. Moreover, most of the fibers appeared at the bottom of the column and at the position where it is farthest from the mold.

  • PDF

Effect of the Off-axis distance of the Electron Emitting Source in Micro-column (마이크로 칼럼의 전자 방출원 위치 오차의 영향)

  • Lee, Eung-Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.1
    • /
    • pp.17-21
    • /
    • 2010
  • Currently miniaturized electron-optical columns find their way into electron beam lithography systems. For better lithography process, it is required to make smaller spot size and longer working distance. But, the micro-columns of the multi-beam lithography system suffer from chromatic and spherical aberration, even when the electron beam is exactly on the symmetric axis of the micro-column. The off-axis error of the electron emitting source is expected to become worse with increasing off-axis distance of the focusing spot. Especially the electron beams far from the system optical axis have a non-negligible asymmetric intensity distribution in the micro-column. In this paper, the effect of the off-axis e-beam source is analyzed. To analyze this effect is to introduce a micro-column model of which the e-beam emitting source is aligned with the center of the electron beam by shifting them perpendicular to the system optical axis. The presented solution can be used to analysis the performance of the multi-electron-beam system. The performance parameters, such as the working distances and the focusing position are obtained by the computational simulations as a function of the off-axis distance of the emitting source.

Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity

  • Akgoz, Bekir;Civalek, Omer
    • Structural Engineering and Mechanics
    • /
    • v.48 no.2
    • /
    • pp.195-205
    • /
    • 2013
  • The buckling problem of linearly tapered micro-columns is investigated on the basis of modified strain gradient elasticity theory. Bernoulli-Euler beam theory is used to model the non-uniform micro column. Rayleigh-Ritz solution method is utilized to obtain the critical buckling loads of the tapered cantilever micro-columns for different taper ratios. Some comparative results for the cases of rectangular and circular cross-sections are presented in graphical and tabular form to show the differences between the results obtained by modified strain gradient elasticity theory and those achieved by modified couple stress and classical theories. From the results, it is observed that the differences between critical buckling loads achieved by classical and those predicted by non-classical theories are considerable for smaller values of the ratio of the micro-column thickness (or diameter) at its bottom end to the additional material length scale parameters and the differences also increase due to increasing of the taper ratio.

Development of simultaneous determination of vitamin A and E in infant formula by micro-HPLC (Micro-HPLC를 이용한 조제분유 중 비타민 A.E 동시분석법 개발)

  • Yun I-Ran;Choi You-Jeong;Lee Min-Kwon;Jeong Myeong-Ho;Kim Byeong-Hun
    • Korean Journal of Veterinary Service
    • /
    • v.29 no.3
    • /
    • pp.339-346
    • /
    • 2006
  • Semi-micro-HPLC using a column-switching technique was developed for simultaneous determination of vitamin A and E contents in infant formula. Vitamin A and E were extracted by PDA - HPLC with reversed phase column using organic solvent and their contents in Certified Reference Material (CRM) and infant formula were determined and compared with hydrolysis method and rapid extraction. Developed method has many advantages of simple and rapid sample preparation and simultaneous determination of vitamin A and E by micro-HPLC using reversed phase column.

Static stability analysis of axially functionally graded tapered micro columns with different boundary conditions

  • Akgoz, Bekir
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.133-142
    • /
    • 2019
  • In the present study, microstructure-dependent static stability analysis of inhomogeneous tapered micro-columns is performed. It is considered that the micro column is made of functionally graded materials and has a variable cross-section. The material and geometrical properties of micro column vary continuously throughout the axial direction. Euler-Bernoulli beam and modified couple stress theories are used to model the nonhomogeneous micro column with variable cross section. Rayleigh-Ritz solution method is implemented to obtain the critical buckling loads for various parameters. A detailed parametric study is performed to examine the influences of taper ratio, material gradation, length scale parameter, and boundary conditions. The validity of the present results is demonstrated by comparing them with some related results available in the literature. It can be emphasized that the size-dependency on the critical buckling loads is more prominent for bigger length scale parameter-to-thickness ratio and changes in the material gradation and taper ratio affect significantly the values of critical buckling loads.

Static and Dynamic Characteristics of Magnetically Preloaded Air Bearing Stage for a 3-Axis Micro-Machine Tool (3축 마이크로 공작기계용 자기예압 공기베어링 스테이지의 정, 동적 특성)

  • Ro Seung-Kook;Ehmann Kornel F.;Yoon Hyung-Suk;Park Jong-Kweon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.468-472
    • /
    • 2005
  • In this paper, the static and dynamic stiffness of the air bearing stage for micro-micro machine tool are examined experimentally. For stiffness and precision concerns, air bearing stages are adapted for 3-axis micro-milling machine which is size of $200x200\;mm^2$. The air bearings in the stage are preloaded by permanent magnets to achieve desired bearing clearance and stiffness for vertical direction. As the stiffness of the air bearing is primary interests, static stiffness test were performed on XY stage in Z direction and Z column in Y direction. Dynamic test were performed on XY stage and Z column, respectively. Both static and dynamic tests were performed in different air pressure conditions. The vertical stiffness of XY stage is about 9 N/ pm where Y stiffness of Z column is much smaller as $1\;N/{\mu}m$ because of the large moment generated by Y force on the column.

  • PDF