• 제목/요약/키워드: miRNA array

검색결과 31건 처리시간 0.031초

Effect of pre-miRNA-1658 gene polymorphism on chicken growth and carcass traits

  • Shi, Jianzhou;Sun, Guirong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권4호
    • /
    • pp.455-461
    • /
    • 2017
  • Objective: Polymorphisms occurring in the precursor region of microRNAs (miRNAs) affect the target gene and alter the biogenesis of miRNAs, resulting in phenotypic variation. The purpose of the study was to investigate the genetic effects of rs16681031 (C>G) mutation in the precursor region of gga-miR-1658 on the economic traits of the Gushi-Anka chicken F2 resource population. Methods: To explore the effect of miR-1658 polymorphisms on chicken economic traits, the SNP was genotyped by MassArray matrix-assisted laser desorption/ionization-time of flight mass spectrometry. The association between the SNP and chicken body size, growth and carcass traits was determined by linear mixed models. Results: The SNP was not only significantly associated with body weight at the age of 6, 8, 10, 12 weeks, respectively, but also with the breadth of the chicken chest, body slanting length and pelvic breadth at 4 weeks, chest depth at 8 weeks of age, and body slanting length at 12 weeks (p<0.05), respectively. Conclusion: Our data serve as a useful resource for further analysis of miRNA function, and represent a molecular genetic basis for poultry breeding.

건칠(乾漆)을 이용한 K562 만성 골수성 백혈병 세포주에서의 MicroRNA 발현 규명 (MicroRNA Expression in Leukemia Cell Line(K562 cell) Using Rhus Verniciflua Stokes)

  • 최현숙
    • 대한본초학회지
    • /
    • 제34권6호
    • /
    • pp.71-78
    • /
    • 2019
  • Objective : The purpose of the study was to identify expression profiling of miRNAs associated with cancers after treating allergen-removed Rhus Verniciflua Stokes and allergen-removed Rhus Verniciflua Stokes fumigaed Angelica gigas on leukemia cell lines. Methods : miRNA expression has been analyzed using miRNA array method through denaturation and hybridization after isolating the total RNA from leukemic cell line treated with 100 ㎍/㎖ of aRVS and aRVS-A each. Microarray expressions were interpreted as 'significant' on miRNAs when decreased less than 0.5 fold or increased more than 1.5 fold compared with the control group. Results : Among 158 miRNAs in total, 32 miRNAs were significantly presented in miRNAs expression. miRNA has been activated with a variety of genes for predicted targets, and the overexpressed miRNAs were categorized according to proliferation and metastasis of cancer in this study. The findings were reported that seven miRNAs (let-7b, miR-193a-5p, 296-3p, 26a, 22, 124a, 92b) showed significant expressions on proliferation and growth, seven miRNAs (miR-193a-5p, 26a, 200c, 183, 124a, 198, 210) presented meaningful expressions on invasion and metastasis, two miRNAs (let-7b, miR-210) were highly expressed on angiogenesis, five miRNAs (let-7b, miR-26a, 181d, 181c, 296-5p) related with apoptosis, and six miRNAs (let-7b, miR-200c, 183, 370, 124a, 191) were associated with prognosis of cancer and early diagnostic factors for cancer. Conclusion : The mechanism of miRNA takes a role in diagnosis, treatment, and prognotic factors for cancer as well. This study suggested that further detailed research on overexpression of specific miRNA should be carried out continuously in the future.

miR-205 in Situ Expression and Localization in Head and Neck Tumors - a Tissue Array Study

  • Ab Mutalib, Nurul-Syakima;Lee, Learn-Han;Cheah, Yoke-Kqueen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권21호
    • /
    • pp.9071-9075
    • /
    • 2014
  • Background: microRNAs are small non-coding RNA that control gene expression by mRNA degradation or translational inhibition. These molecules are known to play essential roles in many biological and physiological processes. miR-205 may be differentially expressed in head and neck cancers; however, there are conflicting data and localization of expression has yet to be determined. Materials and Methods: miR-205 expression was investigated in 48 cases of inflammatory, benign and malignant tumor tissue array of the neck, oronasopharynx, larynx and salivary glands by Locked Nucleic Acid in situ hybridization (LNA-ISH) technology. Results: miR-205 expression was significantly differentially expressed across all of the inflammatory, benign and malignant tumor tissues of the neck. A significant increase in miR-205 staining intensity (p<0.05) was observed from inflammation to benign and malignant tumors in head and neck tissue array, suggesting that miR-205 could be a biomarker to differentiate between cancer and non-cancer tissues. Conclusions: LNA-ISH revealed that miR-205 exhibited significant differential cytoplasmic and nuclear staining among inflammation, benign and malignant tumors of head and neck. miR-205 was not only exclusively expressed in squamous epithelial malignancy. This study offers information and a basis for a comprehensive study of the role of miR-205 that may be useful as a biomarker and/or therapeutic target in head and neck tumors.

Ginsenoside Rh2 upregulates long noncoding RNA STXBP5-AS1 to sponge microRNA-4425 in suppressing breast cancer cell proliferation

  • Park, Jae Eun;Kim, Hyeon Woo;Yun, Sung Hwan;Kim, Sun Jung
    • Journal of Ginseng Research
    • /
    • 제45권6호
    • /
    • pp.754-762
    • /
    • 2021
  • Background: Ginsenoside Rh2, a major saponin derivative in ginseng extract, is recognized for its anti-cancer activities. Compared to coding genes, studies on long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) that are regulated by Rh2 in cancer cells, especially on competitive endogenous RNA (ceRNA) are sparse. Methods: LncRNAs whose promoter DNA methylation level was significantly altered by Rh2 were screened from methylation array data. The effect of STXBP5-AS1, miR-4425, and RNF217 on the proliferation and apoptosis of MCF-7 breast cancer cells was monitored in the presence of Rh2 after deregulating the corresponding gene. The ceRNA relationship between STXBP5-AS1 and miR-4425 was examined by measuring the luciferase activity of a recombinant luciferase/STXBP5-AS1 plasmid construct in the presence of mimic miR-4425. Results: Inhibition of STXBP5-AS1 decreased apoptosis but stimulated growth of the MCF-7 cells, suggesting tumor-suppressive activity of the lncRNA. MiR-4425 was identified to have a binding site on STXBP5-AS1 and proven to be downregulated by STXBP5-AS1 as well as by Rh2. In contrast to STXBP5-AS1, miR-4425 showed pro-proliferation activity by inducing a decrease in apoptosis but increased growth of the MCF-7 cells. MiR-4425 decreased luciferase activity from the luciferase/STXBP5-AS1 construct by 26%. Screening the target genes of miR-4425 and Rh2 revealed that Rh2, STXBP5-AS1, and miR-4425 consistently regulated tumor suppressor RNF217 at both the RNA and protein level. Conclusion: LncRNA STXBP5-AS1 is upregulated by Rh2 via promoter hypomethylation and acts as a ceRNA, sponging the oncogenic miR-4425. Therefore, Rh2 controls the STXBP5-AS1/miR-4425/RNF217 axis to suppress breast cancer cell growth.

MicroRNA biogenesis and function in higher plants

  • Jung, Jae-Hoon;Seo, Pil Joon;Park, Chung-Mo
    • Plant Biotechnology Reports
    • /
    • 제3권2호
    • /
    • pp.111-126
    • /
    • 2009
  • MicroRNAs (miRNAs) are endogenous, non-coding, small RNA molecules consisting of 21-24 nucleotides (nts) that regulate target genes at the posttranscriptional level in plants and animals. In plants, miRNAs negatively regulate target mRNAs containing a highly complementary sequence by either mRNA cleavage or translational repression. MiRNAs are processed from single-stranded precursors containing stem-loop structures by a Dicer-like enzyme and are loaded into silencing complexes, where they act on target mRNAs. Although plant miRNAs were first reported in Arabidopsis 10 years later than animal miRNAs, numerous miRNAs have since been identified from various land plants ranging from mosses to flowering plants, and their roles in diverse aspects of plant developmental processes have been characterized. Furthermore, most of the annotated plant miRNAs are evolutionarily conserved in various plants. In particular, recent functional studies using Arabidopsis mutants have contributed a great deal of information towards establishing a framework for understanding miRNA biogenesis and functional roles. Extensive appraisal of miRNA-directed regulation during a wide array of plant development and plant responses to environmental conditions has confirmed the versatile roles of miRNAs as a key component of plant molecular biology.

파브리병의 바이오마커 발굴을 위한 파브리 마우스와 세포모델에서의 microRNA 발현 분석 (MicroRNA Expression Profiling in Cell and Mouse Models of Fabry Disease to Identify Biomarkers for Fabry Disease Nephropathy)

  • 정남희;박세영;전여진;최윤영;정성철
    • 대한유전성대사질환학회지
    • /
    • 제15권3호
    • /
    • pp.127-137
    • /
    • 2015
  • 본 연구에서는 파브리병의 마우스 모델과 세포모델을 대상으로 miRNA expression microarray를 적용시켜 질환 모델과 정상 대조군 간의 전체 miRNA의 발현 차이를 조사하였고, 발현량에서 차이를 보인 특정 miRNA를 선별한 후, 해당 miRNA의 표적 유전자의 발현량 변화를 살펴보아 파브리병의 신장병변에 대한 바이오마커 발굴과 발병기전을 알아보고자 하였다. MicroRNA array 결과, 파브리 마우스 신장 조직의 경우, 1,247개의 분석 대상 miRNA 중 5개가 발현이 증가되어 있으며 3개가 발현이 감소되어 있음을 확인하였다. 그 중에서 miR-149-5p의 발현이 파브리 마우스의 신장에서 2배 이상 감소되어 있으며, 특히 35주령 이하의 파브리 마우스에서 이러한 감소현상이 나타남을 확인하였고, 또한 lyso-Gb3를 처리하여 배양한 SV40 MES 13 세포에서도 miR-149-5p의 발현이 감소됨을 알 수 있었다. miR-149-5p의 발현감소는 EMT와 관련된 유전자의 발현을 증가시킴을 확인하였다. 본 연구를 통해 miR-149-5p의 생체지표로서의 가능성과 함께 miR-149-5p의 발현감소가 EMT를 통한 파브리병에서의 사구체 섬유화에 관여할 것이라는 가능성을 제시하고 있다.

Association Between Single Nucleotide Polymorphisms in miRNA196a-2 and miRNA146a and Susceptibility to Hepatocellular Carcinoma in a Chinese Population

  • Zhang, Jun;Wang, Rui;Ma, Yan-Yun;Chen, Lin-Qi;Jin, Bo-Han;Yu, Hua;Wang, Jiu-Cun;Gao, Chun-Fang;Liu, Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권11호
    • /
    • pp.6427-6431
    • /
    • 2013
  • Hepatocellular carcinoma (HCC) is one of the most prevalent cancers in the world and deeply threatens people's health, especially in China. Techniques of early diagnosis, prevention and prediction are still being discovered, among which the approaches based on single nucleotide polymorphisms in microRNA genes (miRNA SNPs) are newly proposed and show prospective potential. In particular, the association between SNPs in miRNA196a-2 (rs11614913) and miRNA146a (rs2910164) and HCC has been investigated. However, the conclusions made were conflicting, possibly due to insufficient sample size or population stratification. Further confirmations in well-designed large samples are still required. In this study, we verified the association between these two SNPs and the susceptibility to HCC by MassARRAY assay in a 2,000 large Chinese case-control sample. Significant association between rs11614913 and HCC was confirmed. Subjects with the genotype of CT+TT or T allele in rs11614913 were more resistant to HCC (CT+TT: OR (95% CI)=0.73 (0.57-0.92), P=0.01; T allele: OR (95% CI)=0.85 (0.75-0.97), P=0.02) and HBV-related HCC (CT+TT: OR (95% CI)=0.69 (0.53-0.90), P=0.01; T allele: OR (95% CI)=0.82 (0.71-0.95), P=0.01). The affected carriers of CT or TT also tended to have lower levels of serum AFP (P=0.01). This study demonstrated a role of rs11614913 in the etiology of HCC. Further research should focus on the clinical use of this miRNA SNP, so as to facilitate conquering HCC.

Differential Distribution of miR-20a and miR-20b may Underly Metastatic Heterogeneity of Breast Cancers

  • Li, Jian-Yi;Zhang, Yang;Zhang, Wen-Hai;Jia, Shi;Kang, Ye;Zhu, Xiao-Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권5호
    • /
    • pp.1901-1906
    • /
    • 2012
  • Background: The discovery that microRNA (miRNA) regulates metastasis provide a principal molecular basis for tumor heterogeneity. A characteristic of solid tumors is their heterogenous distribution of blood vessels, with significant hypoxia occurring in regions (centers of tumor) of low blood flow. It is necessary to discover the mechanism of breast cancer metastasis in relation to the fact that there is a differential distribution of crucial microRNA in tumors from centers to edges. Methods: Breast tissues from 48 patients (32 patients with breast cancer) were classified into the high invasive and metastatic group (HIMG), low invasive and metastatic group (LIMG), and normal group. Samples were collected from both the centers and edges of all tumors. The first six specimens were detected by microRNA array, and the second ten specimens were detected by real-time qRT-PCR and Western blot analyses. Correlation analysis was performed between the miRNAs and target proteins. Results: The relative content of miR-20a and miR-20b was lower in the center of the tumor than at the edge in the LIMG, lower at the edge of the tumor than in the center in the HIMG, and lower in breast cancer tissues than in normal tissues. VEGF-A and HIF-1alpha mRNA levels were higher in the HIMG than in the LIMG, and levels were higher in both groups than in the normal group; there was no difference in mRNA levels between the edge and center of the tumor. VEGF-A and HIF-1alpha protein levels were higher in the HIMG than in the LIMG, and protein levels in both groups were higher than in the normal group; there was a significant difference in protein expression between the edge and center of the tumor. Correlation analysis showed that the key miRNAs (miR-20a and miR-20b) negatively correlated with the target proteins (VEGF-A and HIF-1alpha). Conclusions: Our data suggest that miR-20a and miR-20b are differentially distributed in breast cancer, while VEGF-A and HIF-1alpha mRNA had coincident distributions, and VEGF-A and HIF-1alpha proteins had uneven and opposing distributions to the miRNAs. It appears that one of the most important facets underlying metastatic heterogeneity is the differential distribution of miR-20a and miR-20b and their regulation of target proteins.

사람 평활면 치아우식에서 분리한 Neisseria sp. KEM232 균주의 유전체 서열 분석 (Complete genome sequence of Neisseria sp. KEM232 isolated from a human smooth surface caries)

  • 김은미;성치남
    • 미생물학회지
    • /
    • 제54권1호
    • /
    • pp.81-83
    • /
    • 2018
  • Neisseria 속 균주 KEM232는 사람 평활면 치아우식 부위로부터 분리하였다. 균주 KEM232의 유전체는 G + C 비율이 58.5%, 2,369개의 유전자와 2,210개의 단백질 코딩 유전자, 108개의 위유전자, 51개의 RNA 유전자 그리고 한 개의 CRISPR array를 포함한 단일 원형 염색체로 구성되었으며 그 크기는 2,371,912 bp였다. 균주 KEM232의 최 근연종은 Neisseria baciliformis 로서 두 균주 사이의 16S rRNA 유전자 염기서열의 유사도는 96.8% 그리고 유전체의 평균 염기 동일성은 84%였다.

Differential Distribution of microRNAs in Breast Cancer Grouped by Clinicopathological Subtypes

  • Li, Jian-Yi;Jia, Shi;Zhang, Wen-Hai;Zhang, Yang;Kang, Ye;Li, Pi-Song
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권5호
    • /
    • pp.3197-3203
    • /
    • 2013
  • Background: microRNAs (miRNAs) that regulate proliferation, invasion and metastasis are considered to be the principal molecular basis of tumor heterogeneity. Breast cancer is not a homogeneous tissue. Thus, it is very important to perform microarray-based miRNA screening of tumors at different sites. Methods: Breast tissue samples from the centers and edges of tumors of 30 patients were classified into 5 clinicopathological subtypes. In each group, 6 specimens were examined by microRNA array. All differential miRNAs were analyzed between the edges and centers of the tumors. Results: Seventeen kinds of miRNAs were heterogeneously distributed in the tumors from different clinicopathological subtypes that included 1 kind of miRNA in Luminal A and Luminal B Her2+ subtypes, 4 kinds in Luminal A and Her2 overexpression subtypes, 6 kinds in Luminal B Ki67+ and Luminal B Her2+ subtypes, 2 kinds between Luminal B Ki67+ and triple-negative breast cancer (TNBC) subtypes, 2 kinds between Luminal B Her2+ and TNBC subtypes, and 2 kinds between Luminal B Ki67+, Luminal B Her2+, and TNBC subtypes. Twenty kinds of miRNAs were homogenously distributed in the tumors from different clinicopathological subtypes that included 6 kinds of miRNAs in Luminal B Ki67+ and Luminal B Her2+ subtypes, 1 kind in Luminal B Ki67+ and Her2 overexpression subtypes, 10 kinds between Luminal B Ki67+ and TNBC subtypes, 2 kinds in Luminal B Her2+ and TNBC subtypes, and 1 kind between Luminal B Ki67+, Luminal B Her2+, and TNBC subtypes. Conclusions: A total of 37 miRNAs were significantly distributed in tumors from the centers to edges, and in all clinicopathological subtypes.