• Title/Summary/Keyword: metropolitan railroad

Search Result 216, Processing Time 0.022 seconds

Estimation of installation spacing by analyzing the lateral behavior of the safety fence fixed to rail bottom (레일저부고정형 안전펜스의 횡 방향 거동 분석을 통한 설치간격 산정)

  • Park, Seonghyeon;Sung, Deokyong;Lee, Changho;Jung, Hyuksang;Youg, Seungkyong
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.249-257
    • /
    • 2018
  • The number of deaths for railway traffic accidents is mainly caused by working close to the track, or when unauthorized passage pass through the track. The safety fences are being used to ensure safety for workers close to the track, and to improve the efficiency of the work, without interfering with the passage of trains. However, a safety fence for railway tracks needs to be examined to see if it will interfere with the passage of trains. The purpose of this study is to analyze the safe distance between train and safety fence developed in Korea. In addition, the lateral load condition of wind pressure by trains is estimated and numerical analysis is carried out according to the installation intervals of railway safety fences. It has been confirmed that the proper spacing between the train and the railway safety fence should be at least 200 mm from the vehicle limit, and that the proper spacing of railway safety fence must be calculated in consideration of the wind pressure by trains.

A Development of Optimum Operation Models for Express-Rail Systems (급행열차 도입을 통한 최적운행방안 수립에 관한 연구 - 수도권 광역 도시철도를 중심으로 -)

  • Park, Jeong-Soo;Lee, Hoon-Hee;Won, Jai-Mu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.679-686
    • /
    • 2006
  • Recently, the city railway in the Seoul Metropolitan Area (SMA) has offered a low quality of service as a passage time, because it was operated slowly. So, the people who live in modern society are not satisfied about passage time, therefore, this study tried to make that the subway in the SMA becomes a more functional and effective wide-area-transportation-network through an express train introduction's method which examined cases from abroad and current system. and then presented how express train could be applied to current system. In a case study, We used the An-San Line and Su-In Line as a examples and developed a schedule which can minimize the delaying time of subway by using Branch & Bound Algorithm. The train operational plan was loaded to consider a railroad siding, Obtained site, and the dispatch interval(three to ten minutes) for the express and local lines and finally, We presented an alternative operational plan which made by those factors.

A Methodology of Multimodal Public Transportation Network Building and Path Searching Using Transportation Card Data (교통카드 기반자료를 활용한 복합대중교통망 구축 및 경로탐색 방안 연구)

  • Cheon, Seung-Hoon;Shin, Seong-Il;Lee, Young-Ihn;Lee, Chang-Ju
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.3
    • /
    • pp.233-243
    • /
    • 2008
  • Recognition for the importance and roles of public transportation is increasing because of traffic problems in many cities. In spite of this paradigm change, previous researches related with public transportation trip assignment have limits in some aspects. Especially, in case of multimodal public transportation networks, many characters should be considered such as transfers. operational time schedules, waiting time and travel cost. After metropolitan integrated transfer discount system was carried out, transfer trips are increasing among traffic modes and this takes the variation of users' route choices. Moreover, the advent of high-technology public transportation card called smart card, public transportation users' travel information can be recorded automatically and this gives many researchers new analytical methodology for multimodal public transportation networks. In this paper, it is suggested that the methodology for establishment of brand new multimodal public transportation networks based on computer programming methods using transportation card data. First, we propose the building method of integrated transportation networks based on bus and urban railroad stations in order to make full use of travel information from transportation card data. Second, it is offered how to connect the broken transfer links by computer-based programming techniques. This is very helpful to solve the transfer problems that existing transportation networks have. Lastly, we give the methodology for users' paths finding and network establishment among multi-modes in multimodal public transportation networks. By using proposed methodology in this research, it becomes easy to build multimodal public transportation networks with existing bus and urban railroad station coordinates. Also, without extra works including transfer links connection, it is possible to make large-scaled multimodal public transportation networks. In the end, this study can contribute to solve users' paths finding problem among multi-modes which is regarded as an unsolved issue in existing transportation networks.

A Study on Effect of Stabilizing Pile on Stability of Infinite Slope (무한사면의 안정성에 미치는 억지말뚝의 영향에 대한 이론적 연구)

  • Lee, Seung-Hyun;Lee, Su-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.496-503
    • /
    • 2016
  • To analyze an infinite slope that is reinforced with stabilizing piles, the forces on the stabilizing pile were estimated by the theory of plastic deformation and the theory of plastic flow and the effects of diverse factors on the factor of safety of an infinite slope were investigated. According to the results of the analyses, the factor of the safety of the slope reinforced with stabilized piles were increased tremendously and the factor of safety decreased as the center to center distance of the stabilizing pile increased. The effect of the existence of seepage of the infinite slope with stabilizing piles on the factor of safety appears to be insignificant. Considering the formulated factor of safety of an infinite slope with stabilizing piles, the width and length of the element of the infinite slope and force on the stabilizing pile influence the factor of safety of the infinite slope with a stabilizing pile including the soil strength parameter, inclination of the slope and depth of the slope, which are important for calculating the factor of safety of a non-reinforced infinite slope. The factor of safety of an infinite slope with stabilizing piles derived from the theory of plastic deformation were increased significantly with the internal friction angle of the soil, and the minimum and the maximum factor of safety under the conditions considered in this study were 13.7 and 65.6, respectively. As the diameter of the stabilizing pile increased, the forces on the stabilizing pile also increased but the factor of safety of the infinite slope with stabilizing piles decreased due to the effects of the width and the length of the element of the infinite slope. The factor of safety of the infinite slope with stabilizing piles derived from plastic flow were much larger than that of the non-reinforced infinite slope and the factor safety of the infinite slope with a stabilizing pile increased with increasing product of the flow velocity and plastic viscosity ( ) and the factor of safety of the infinite slope with stabilizing piles decreased with increasing center to center distance of the pile.

Analyzing the Efficiency of Korean Rail Transit Properties using Data Envelopment Analysis (자료포락분석기법을 이용한 도시철도 운영기관의 효율성 분석)

  • 김민정;김성수
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.4
    • /
    • pp.113-132
    • /
    • 2003
  • Using nonradial data envelopment analysis(DEA) under assumptions of strong disposability and variable returns scale, this paper annually estimates productive. technical and allocative efficiencies of three publicly-owned rail transit properties which are different in terms of organizational type: Seoul Subway Corporation(SSC, local public corporation), the Seoul Metropolitan Electrified Railways sector (SMESRS) of Korea National Railroad(the national railway operator controlled by the Ministry of Construction and Transportation(MOCT)), and Busan Urban Transit Authority (BUTA, the national authority controlled by MOCT). Using the estimation results of Tobit regression analysis. the paper next computes their true productive, true technical and true allocative efficiencies, which reflect only the impacts of internal factors such as production activity by removing the impacts of external factors such as an organizational type and a track utilization rate. And the paper also computes an organizational efficiency and annually gross efficiencies for each property. The paper then conceptualized that the property produces a single output(car-kilometers) using four inputs(labor, electricity, car & maintenance and track) and uses unbalanced panel data consisted of annual observations on SSC, SMESRS and BUTA. The results obtained from DEA show that, on an average, SSC is the most efficient property on the productive and allocative sides, while SMESRS is the most technically-efficient one. On the other hand. BUTA is the most efficient one on the truly-productive and allocative sides, while SMESRS on the truly-technical side. Another important result is that the differences in true efficiency estimates among the three properties are considerably smaller than those in efficiency estimates. Besides. the most cost-efficient organizational type appears to be a local public corporation represented by SSC, which is also the most grossly-efficient property. These results suggest that a measure to sort out the impacts of external factors on the efficiency of rail transit properties is required to assess fairly it, and that a measure to restructure (establish) an existing(a new) rail transit property into a local public corporation(or authority) is required to improve its cost efficiency.

Installation Standards of Urban Deep Road Tunnel Fire Safety Facilities (도심부 대심도 터널의 방재시설 설치 기준에 관한 연구(부산 승학터널 사례를 중심으로))

  • Lee, Soobeom;Kim, JeongHyun;Kim, Jungsik;Kim, Dohoon;Lim, Joonbum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.727-736
    • /
    • 2021
  • Road tunnel lengths are increasing. Some 1,300 tunnels with 1,102 km in length had been increased till 2019 from 2010. There are 64 tunnels over 3,000 m in length, with their total length adding up to 276.7 km. Safety facilities in the event of a tunnel fire are critical so as to prevent large-scale casualties. Standards for installing disaster prevention facilities are being proposed based on the guidelines of the Ministry of Land, Infrastructure and Transport, but they may be limited to deep underground tunnels. This study was undertaken to provide guidelines for the spacing of evacuation connection passages and the widths of evacuation connection doors. Evacuation with various spacing and widths was simulated in regards to evacuation time, which is the measure of safety, using the evacuation analysis simulation software EXODUS Ver.6.3 and the fire/smoke analysis software SMARTFIRE Ver.4.1. Evacuation connection gates with widths of 0.9 m and 1.2 m, and spacings of 150 m to 250 m, were set to every 20 m. In addition, longitudinal slopes of 6 % and 0 % were considered. It was determined to be safe when the evacuation completion time was shorter than the delay diffusion time. According to the simulation results, all occupants could complete evacuation before smoke spread regardless of the width of the evacuation connection door when the longitudinal slope was 6 % and the interval of evacuation connection passage was 150 m. When the evacuation connection passage spacing was 200 m and the evacuation connection gate width was 1.2 m, all occupants could evacuate when the longitudinal slope was 0 %. Due to difference in evacuation speed according to the longitudinal slope, the evacuation time with a 6 % slope was 114 seconds shorter (with the 190 m connection passage) than with a 0 % slope. A shorter spacing of evacuation connection passages may reduce the evacuation time, but this is difficult to implement in practice because of economic and structural limitations. If the width of the evacuation junction is 1.2 m, occupants could evacuate faster than with a 0.9 m width. When the width of a connection door is 1.2 m with appropriate connection passage spacing, it might provide a means to increase economic efficiency and resolve structural limitations while securing evacuation safety.