• Title/Summary/Keyword: methylated flavonoids

Search Result 4, Processing Time 0.019 seconds

Molecular Cloning and Characterization of Bacillus cereus O-Methyltransferase

  • Lee Hyo-Jung;Kim Bong-Gyu;Ahn Joong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.619-622
    • /
    • 2006
  • Biotransformation is a good tool to synthesize regioselective compounds. It could be performed with diverse sources of genes, and microorganisms provide a myriad of gene sources for biotransformation. We were interested in modification of flavonoids, and therefore, we cloned a putative O-methyltransferase from Bacillus cereus, BcOMT-2. It has a 668-bp open reading frame that encodes a 24.6-kDa protein. In order to investigate the modification reaction mediated by BcOMT-2, it was expressed in E. coli as a His-tag fusion protein and purified to homogeneity. Several substrates such as naringenin, luteolin, kaempferol, and quercetin were tested and reaction products were analyzed by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). BcOMT-2 could transfer a methyl group to substrates that have a 3' functional hydroxyl group, such as luteolin and quercetin. Comparison of the HPLC retention time and UV spectrum of the quercetin reaction product with corresponding authentic 3'-methylated and 4'-methylated compounds showed that the methylation position was at either the 3'-hydroxyl or 4'-hydroxyl group. Thus, BcOMT-2 transfers a methyl group either to the 3'-hydroxyl or 4'-hydroxyl group of flavonoids when both hydroxyl groups are available. Among several flavonoids that contain a 3'- and 4'-hydroxyl group, fisetin was the best substrate for the BcOMT-2.

Isolation and Identification of Flavonoids from Ethanol Extracts of Artemisia vulgaris and Their Antioxidant Activity (쑥의 에탄올 추출물에 함유된 Flavonoid들의 분리 및 동정과 이들의 항산화 효과)

  • Lee, Sang-Jun;Chung, Ha-Yull;Lee, In-Kyoung;Yoo, Ick-Dong
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.815-822
    • /
    • 1999
  • Twenty one flavonoids were isolated from ethyl acetate layer of aqueaus EtOH extracts of Artemisia vulgaris and identified as tricin, jaceosidine, eupafolin, diosmetin, chrysoeriol, homoeriodictyol, isorhamnetin, apigenin, eriodictyol, luteolin, luteolin 7-glucoside, kaempferol 3-glucoside, kaempferol 7-glucoside, kaempferol 3-rhamnoside, kaempferol 3-rutinside, quercetin, quercetin 3-glucoside, quercetin 3-galactoside, quercetrin, quercetin 7-glucoside, rutin, and vietexin. The inhibitory activity for all purified flavonoids were examined against lipid peroxidation in rat liver microsome. All examined flavonoids showed considerable antioxidant activity. Among them, $IC_{50}$ value of apigenin, luteolin, isorhamnetin, quercetin, and eriodictyol were showed higher than that of vitamin E used as positive control. And methoxylated flavonoids, tricin, eupafolin, jaceosidine, diosmetin, and isorhamnetin showed considerable antioxidant activity. Each $IC_{50}$ values were shown at 0.9, 1.0, 1.4, 1.0, and $0.7\;{\mu}g/mL$, respectively.

  • PDF

Characterization of an O-Methyltransferase from Streptomyces avermitilis MA-4680

  • Yoon, Young-Dae;Park, Young-Hee;Yi, Yong-Sub;Lee, Young-Shim;Jo, Geun-Hyeong;Park, Jun-Cheol;Ahn, Joong-Hoon;Lim, Yoong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.9
    • /
    • pp.1359-1366
    • /
    • 2010
  • A search of the Streptomyces avermitilis genome reveals that its closest homologs are several O-methyltransferases. Among them, one gene (viz., saomt5) was cloned into the pET-15b expression vector by polymerase chain reaction using sequence-specific oligonucleotide primers. Biochemical characterization with the recombinant protein showed that SaOMT5 was S-adenosyl-L-methionine-dependent Omethyltransferase. Several compounds were tested as substrates of SaOMT5. As a result, SaOMT5 catalyzed O-methylation of flavonoids such as 6,7-dihydroxyflavone, 2',3'-dihydroxyflavone, 3',4'-dihydroxyflavone, quercetin, and 7,8-dihydroxyflavone, and phenolic compounds such as caffeic acid and caffeoyl Co-A. These reaction products were analyzed by TLC, HPLC, LC/MS, and NMR spectroscopy. In addition, SaOMT5 could convert phenolic compounds containing ortho-dihydroxy groups into O-methylated compounds, and 6,7-dihydroxyflavone was known to be the best substrate. SaOMT5 converted 6,7-dihydroxyflavone into 6-hydroxy-7-methoxyflavone and 7-hydroxy-6-methoxyflavone, and caffeic acid into ferulic acid and isoferulic acid, respectively. Moreover, SaOMT5 turned out to be a $Mg^{2+}$-dependent OMT, and the effect of $Mg^{2+}$ ion on its activity was five times greater than those of $Ca^{2+}$, $Fe^{2+}$, and $Cu^{2+}$ ions, EDTA, and metal-free medium.

Chemical Constituents of Lathyrus davidii

  • Park, Su-Yeon;Kim, Ju-Sun;Lee, So-Young;Bae, Ki-Hwan;Kang, Sam-Sik
    • Natural Product Sciences
    • /
    • v.14 no.4
    • /
    • pp.281-288
    • /
    • 2008
  • From the MeOH extract of the whole plants of Lathyrus davidii (Fabaceae), thirteen constituents were isolated and identified as the flavonoids astragalin, isoquercitrin, nicotiflorin, and rutin, as the saponins soyasapogenol B 3-O-${\beta}$-D-glucuronopyranoside, azukisaponins II and V, soyasaponins II and V and as 4-O-${\beta}$-Dglucopyranosyl syringic acid, uracil and n-hexacosanol. Five saponins and 4-O-${\beta}$-D-glucopyranosyl syringic acid were isolated from the BuOH fraction as their methyl esters. Ombuoside (rutin 7,4'-di-O-methyl ether) was also isolated from the methylated BuOH-soluble fraction. However, no ombuoside was detected in the HPLC analysis of the nonmethylated BuOH fraction. Therefore, ombuoside is an artifact derived from methylation of rutin. All of these compounds were isolated for the first time from this plant.