• Title/Summary/Keyword: methylated derivatives

Search Result 20, Processing Time 0.02 seconds

Synthesis of Naftifine-Related Allylamine as a Potential Antimycotics (항진균제 Naftifine 구조와 관련된 알릴아민류의 합성)

  • Kim, Wook;Park, Eun-Ju;Seo, Hee-Kyong;Shin, Boo-Ahn;Choi, Bo-Gil;Chung, Byung-Ho
    • YAKHAK HOEJI
    • /
    • v.37 no.3
    • /
    • pp.247-253
    • /
    • 1993
  • Eight new derivatives of allylamine which are related to naftifine and expected to have antifungal activity were synthesized. Schiff base 2a-2d and 2'e-2'h were obtained by conventional methods using trans-cinnamylamine or trans-cinnamaldehyde. The reduction of azomethine linkage with NaBH$_{4}$ yielded secondary amine 3a-3h, which were then methylated by means of HCHO and excess NaBH$_{4}$ or HCOOH to give 4a-4h.

  • PDF

In vitro Atiinflmmatory Activity of Paeonol from the Essential Oil and Its Derivative Methylpaeonol (목단피 정유에서 분리된 Paeonol과 그 유도체 Methylpaeonol의 in vitro 항염효과)

  • Choi, Moo-Young;Park, Hee-Juhn
    • Korean Journal of Pharmacognosy
    • /
    • v.36 no.2 s.141
    • /
    • pp.116-120
    • /
    • 2005
  • Paeonol (2-hydroxy-5-methoxyacetophenone) obtained by silica gel column chromatography of the essential oil extracted from Paeonia moutan (Paeoniaceae) was methylated by dimethylsulfate to yield methylpaeonol (2,5-di-O-methylacetophenone). Both compounds inhibited nitric oxide (NO) foundation in lipopolysaccharide-induced macrophage RAW 264.7 cells in nitrite assay. In the western blotting assay, it was shown that both compounds also decreased inducible nitric oxide synthase (iNOS)-and cyclooxygenase-2(COX-2) formation. Methylpaeonol produced more potently inhibited NO-, iNOS and COX-2 formation in the assays than paeonol. These results suggest that paeonol is in part responsible for anti-inflammatory activity of Paeonia moutan, and that synthesis of paeonol derivatives may produce a promising candidate for andtiifnalmmatory agent.

Isolation and Characterization of Aerobic Trichloroethylene Cometabolizing Bacterium (호기적 Trichloroethylene 공동대사 세균의 분리 및 특성)

  • 김호성;박근태;손홍주;박성훈;이상준
    • Journal of Environmental Science International
    • /
    • v.10 no.2
    • /
    • pp.99-103
    • /
    • 2001
  • Several microorganisms which degrade phenol and trichloroethylene(TCE) were isolated from the activated sludge of a wastewater treatment plant. Among them, one isolate EL-04J showed the highest degradability and was identified as a Pseudomonas species according to morphological, cultural and biochemical properties. The phenol-induced cells of Pseudomonas EL-04J, which were preincubated in the mineral salts medium containing phenol as a sole carbon source, degraded 90% of 25$\mu$M TCE within 20h. This strain could also utilize some of methylated phenol derivatives (o-cresol, m-cresol and p-cresol) as the sole source of carbon and energy. Cresol-induced cells of Pseudomonas EL-04J also cometabolized TCE.

  • PDF

Activation Mode and Glycosidic Linkage of Anti-Complementary Polysaccharide Isolated from Young Stems of Cinnamomum cassia Blume (계지(桂枝)에서 정제한 보체계 활성화 다당의 작용양식과 당쇄구조)

  • Ra, Kyung-Soo;An, Hyun-Jung;Kweon, Mee-Hyang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.2
    • /
    • pp.248-253
    • /
    • 1997
  • The paper describes the activation mode and the glycosic linkage of anti-complementary polysaccharide isolated from Cinnamomum cassia. The polysaccharide fractions, CC-IIIa, CC-IIIb, and CC-IIIc, activated C3 component existed in normal human serum and produced C3 cleavage segments, C3a and C3b. The polysaccharide, CC-2-IIIa-3 activated the complement system both in the presence and absence of $Ca^{++}$, suggesting that it involved in both classical and alternative complement pathways. Methylation of CC-2-IIIa-3 was performed with methylsulphinyl carbanion and methyl iodide in DMSO. The methylated products was hydrolyzed, then converted into the partially methylated alditol acetates. Gas chromatography-mass spectrometry(GC-MS) revealed derivatives of terminal $Glc{\rho}$ and $Gal{\rho}$, 1,2-linked $Rha{\rho}$, 1,6-linked $Man{\rho}$, 1,3-linked $Glc{\rho}$, 1,6-linked $Gal{\rho}$ etc.

  • PDF

In vitro Translation and Methylation of Iso-1-Cytochrome C from Saccharomyces Cerevisiae

  • Paik, Woon-Ki;Park, Kwang-Sook;Tuck, Martin;Kim, Sang-Duk
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1986.12a
    • /
    • pp.505.1-505
    • /
    • 1986
  • The gene for iso-1-cytochrome c for Saccharomyces cerevisiae was recloned into a pSP65 vector containing an active bacteriophage SP6 promoter. The iso-1-cytochrome c gene was cloned as an 856 bp Xho 1-Hind III fragment. When the resulting plasmid was digested at the Hind 111 site 279 bases downstream from the termination codon of the gene and transcribed in vitro using SP6 RNA polymerase, full length transcripts were produced. The SP6 iso-1-cytochrome c mRNA was translated using a rabbit reticulocyte lysate system and the protein products analyzed on SDS polyacrylamide gels. One major band was detected by autofluorography. This band was found to have a molecular weight of 12,000 Da and coincided with the Coomassie staining band of apocytochrome c from S. cerebisiae. The product was also shown to be identical with that of standard yeast apocytochrome c on an isoelectric focusing gel. The in vitro synthesized iso-a-cytochrome c was methylated by adding partially purified S-adenosyl-L-methionine . protein-lysine N-methyltransferase (Protein methylase III; EC 2.1.1.43) from S. cerevisiae along with S-adenosyl-L-methionine to the in vitro translation mixtures. The methylation was shown to be inhibited by the addition of the methylase inhibitor S-adenosyl-L-homocysteine or the protein synthesis inhibitor pu omycin. The methyl derivatives in the protein were identified as $\varepsilon$-N-mono, di and trimethyllysine by amino acid analysis. The molar ratio of methyl groups incorporated to that of cytochrome c molecules synthesized showed that 23% of the translated cytochrome c molecules were methylated by protein methylase III.

  • PDF

New Esterification Method for the Simulataneous Analysis of 2,4-D, Dicamba and Mecoprop in Soil Leachates by GC/MS and GC/ ECD (새로운 유도체 합성법에 의한 토양침투수중 2,4-D, dicamba 및 mecoprop의 동시 분석법에 관한 연구)

  • Hong, Moo-Ki;Lee, Hee-Duck;Park, Kun-Sang
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.1
    • /
    • pp.45-54
    • /
    • 1995
  • esters of the acid analytes were synthesized using $H_2SO_4$ as the catalyst. Efficiency of derivatization and instrumental molecular-response were compared with herbicides methylated with $BF_3-methanol$(14% W/V), $H_2SO_4-methanol$(33% V/V), and diazomethane. The molecular integrity of TFE-2,4-D, TFE-dicamba, and TFE-mecoprop, in the mixture, was confirmed by the GC/MSD method. The TFE-Esterification efficiency was maximized by adjusting the volume of $H_2SO_4$ the reaction time, and temperature. Optimal efficiency for the herbicide mixture was obtained by adding 1 ml of $H_2SO_4$ and 1 ml of TFE to the dried sample and allowing the reaction to proceed at $22^{\circ}C$ for 8 hr or using 0.5 ml $H_2SO_4$ and 1 ml of TFE at $60^{\circ}C$. For 120 min increasing the temperature and decreasing the reaction time were required for maximum esterification efficiency. The sensitivity of the GC/ECD to the TFE esters was about $2{\sim}20$ times greater than that to the methyl ester derivatives. The herbicides were extracted and esterified to TFE derivatives simultaneously from soil leachates previously spiked with the analytes. Herbicide recovery, peak resolution, and detector sensitivity were excellent without using column cleanup procedures.

  • PDF

Production of Bioactive 3'-Hydroxystilbene Compounds Using the Flavin-Dependent Monooxygenase Sam5

  • Heo, Kyung Taek;Lee, Byeongsan;Son, Sangkeun;Ahn, Jong Seog;Jang, Jae-Hyuk;Hong, Young-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.7
    • /
    • pp.1105-1111
    • /
    • 2018
  • The flavin-dependent monooxygenase Sam5 was previously reported to be a bifunctional hydroxylase with coumarate 3-hydroxylase and resveratrol 3'-hydroxylase activities. In this article, we showed the Sam5 enzyme has 3'-hydroxylation activities for methylated resveratrols (pinostilbene and pterostilbene), hydroxylated resveratrol (oxyresveratrol), and glycosylated resveratrol (piceid) as substrates. However, piceid, a glycone-type stilbene used as a substrate for bioconversion experiments with the Sam5 enzyme expressed in Escherichia coli, did not convert to the hydroxylated compound astringin, but it was converted by in vitro enzyme reactions. Finally, we report a novel catalytic activity of Sam5 monooxygenase for the synthesis of piceatannol derivatives, 3'-hydroxylated stilbene compounds. Development of this bioproduction method for the hydroxylation of stilbenes is challenging because of the difficulty in expressing P450-type hydroxylase in E. coli and regiospecific chemical synthesis.

Application of Jasmonic Acid Followed by Salicylic Acid Inhibits Cucumber mosaic virus Replication

  • Luo, Ying;Shang, Jing;Zhao, Pingping;Xi, Dehui;Yuan, Shu;Lin, Honghui
    • The Plant Pathology Journal
    • /
    • v.27 no.1
    • /
    • pp.53-58
    • /
    • 2011
  • Systemic acquired resistance is a form of inducible resistance that is triggered in systemic healthy tissues of local-infected plants. Several candidate signaling molecules emerged in the past two years, including the methylated derivatives of well-known defense hormones salicylic acid (SA) and jasmonic acid (JA). In our present study, the symptom on Cucumber mosaic virus (CMV) infected Arabidopsis leaves in 0.1 mM SA or 0.06 mM JA pre-treated plants was lighter (less reactive oxygen species accumulation and less oxidative damages) than that of the control group. JA followed by SA (JA${\rightarrow}$SA) had the highest inhibitory efficiency to CMV replication, higher than JA and SA simultaneous co-pretreatment (JA+SA), and higher than a JA or a SA single pretreatment. The crosstalk between the two hormones was further investigated at the transcriptional levels of pathogenesis-related genes. The time-course measurement showed JA might play a more important role in the interaction between JA and SA.

Metabolic Engineering for Resveratrol Derivative Biosynthesis in Escherichia coli

  • Jeong, Yu Jeong;Woo, Su Gyeong;An, Chul Han;Jeong, Hyung Jae;Hong, Young-Soo;Kim, Young-Min;Ryu, Young Bae;Rho, Mun-Chual;Lee, Woo Song;Kim, Cha Young
    • Molecules and Cells
    • /
    • v.38 no.4
    • /
    • pp.318-326
    • /
    • 2015
  • We previously reported that the SbROMT3syn recombinant protein catalyzes the production of the methylated resveratrol derivatives pinostilbene and pterostilbene by methylating substrate resveratrol in recombinant E. coli. To further study the production of stilbene compounds in E. coli by the expression of enzymes involved in stilbene biosynthesis, we isolated three stilbene synthase (STS) genes from rhubarb, peanut, and grape as well as two resveratrol O-methyltransferase (ROMT) genes from grape and sorghum. The ability of RpSTS to produce resveratrol in recombinant E. coli was compared with other AhSTS and VrSTS genes. Out of three STS, only AhSTS was able to produce resveratrol from p-coumaric acid. Thus, to improve the solubility of RpSTS, VrROMT, and SbROMT3 in E. coli, we synthesized the RpSTS, VrROMT and SbROMT3 genes following codon-optimization and expressed one or both genes together with the cinnamate/4-coumarate:coenzyme A ligase (CCL) gene from Streptomyces coelicolor. Our HPLC and LC-MS analyses showed that recombinant E. coli expressing both ScCCL and RpSTSsyn led to the production of resveratrol when p-coumaric acid was used as the precursor. In addition, incorporation of SbROMT3syn in recombinant E. coli cells produced resveratrol and its mono-methylated derivative, pinostilbene, as the major products from p-coumaric acid. However, very small amounts of pterostilbene were only detectable in the recombinant E. coli cells expressing the ScCCL, RpSTSsyn and SbROMT3syn genes. These results suggest that RpSTSsyn exhibits an enhanced enzyme activity to produce resveratrol and SbROMT3syn catalyzes the methylation of resveratrol to produce pinostilbene in E. coli cells.

Acetyl Eburicoic Acid from Laetiporus sulphureus var. miniatus Suppresses Inflammation in Murine Macrophage RAW 264.7 Cells

  • Saba, Evelyn;Son, Youngmin;Jeon, Bo Ra;Kim, Seong-Eun;Lee, In-Kyoung;Yun, Bong-Sik;Rhee, Man Hee
    • Mycobiology
    • /
    • v.43 no.2
    • /
    • pp.131-136
    • /
    • 2015
  • The basidiomycete Laetiporus sulphureus var. miniatus belongs to the Aphyllophorales, Polyporaceae, and grows on the needleleaf tree. The fruiting bodies of Laetiporus species are known to produce N-methylated tyramine derivatives, polysaccharides, and various lanostane triterpenoids. As part of our ongoing effort to discover biologically active compounds from wood-rotting fungi, an anti-inflammatory triterpene, LSM-H7, has been isolated from the fruiting body of L. sulphureus var. miniatus and identified as acetyl eburicoic acid. LSM-H7 dose-dependently inhibited the NO production in RAW 264.7 cells without any cytotoxicity at the tested concentrations. Furthermore it suppressed the production of proinflammatory cytokines, mainly inducible nitric oxide synthase, cyclooxygenase-2, interleukin (IL)-$1{\beta}$, IL-6 and tumor necrosis factor ${\alpha}$, when compared with glyceraldehyde 3-phosphate dehydrogenase. These data suggest that LSM-H7 is a crucial component for the anti-inflammatory activity of L. sulphureus var. miniatus.