• Title/Summary/Keyword: method detection limit

Search Result 1,360, Processing Time 0.035 seconds

Rapid and Visual Detection of Vibrio parahaemolyticus in Aquatic Foods Using blaCARB-17 Gene-Based Loop-Mediated Isothermal Amplification with Lateral Flow Dipstick (LAMP-LFD)

  • Hu, Yuan-qing;Huang, Xian-hui;Guo, Li-qing;Shen, Zi-chen;LV, Lin-xue;Li, Feng-xia;Zhou, Zan-hu;Zhang, Dan-feng
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.12
    • /
    • pp.1672-1683
    • /
    • 2021
  • Vibrio parahaemolyticus is recognized as one of the most important foodborne pathogens responsible for gastroenteritis in humans. The blaCARB-17 gene is an intrinsic β-lactamase gene and a novel species-specific genetic marker of V. parahaemolyticus. In this study, a loop-mediated isothermal amplification (LAMP) assay combined with a lateral flow dipstick (LFD) was developed targeting this blaCARB-17 gene. The specificity of LAMP-LFD was ascertained by detecting V. parahaemolyticus ATCC 17802 and seven other non-V. parahaemolyticus strains. Finally, the practicability of LAMP-LFD was confirmed by detection with V. parahaemolyticus-contaminated samples and natural food samples. The results showed that the optimized reaction parameters of LAMP are as follows: 2.4 mmol/l Mg2+, 0.96 mmol/l dNTPs, 4.8 U Bst DNA polymerase, and an 8:1 ratio of inner primer to outer primer, at 63℃ for 40 min. The optimized reaction time of the LFD assay is 60 min. Cross-reactivity analysis with the seven non-V. parahaemolyticus strains showed that LAMP-LFD was exclusively specific for V. parahaemolyticus. The detection limit of LAMP-LFD for V. parahaemolyticus genomic DNA was 2.1 × 10-4 ng/μl, corresponding to 630 fg/reaction and displaying a sensitivity that is 100-fold higher than that of conventional PCR. LAMP-LFD in a spiking study revealed a detection limit of approximately 6 CFU/ml, which was similar with conventional PCR. The developed LAMP-LFD specifically identified the 10 V. parahaemolyticus isolates from 30 seafood samples, suggesting that this LAMP-LFD may be a suitable diagnostic method for detecting V. parahaemolyticus in aquatic foods.

Analytical Determination of Vitamin B12 Content in Infant and Toddler Milk Formulas by Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS)

  • Lee, Jung-Hoon;Shin, Jin-Ho;Park, Jung-Min;Kim, Ha-Jung;Ahn, Jang-Hyuk;Kwak, Byung-Man;Kim, Jin-Man
    • Food Science of Animal Resources
    • /
    • v.35 no.6
    • /
    • pp.765-771
    • /
    • 2015
  • The development of a sample preparation method and optimization of the analytical instrumentation conditions were performed for the determination of the vitamin B12 content in emulsified baby foods sold on the Korea market. After removal of the milk protein and fats by chloroform extraction and centrifugation, the vitamin B12 was water extracted from the sample. Following filtration of the solution through a nylon filter, the water-soluble extract was purified by solid-phase extraction using a Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS). The solution eluted from the cartridge was dried under a stream of nitrogen gas and reconstituted with 1 mL of water. The sample solution was injected into an LC-MS/MS system after optimizing the mobile phase for vitamin B12 detection. The calibration curve showed good linearity with the coefficient of correlation (r2) value of 0.9999. The limit of detection was 0.03 µg/L and the limit of quantitation was 0.1 µg/L. The method of detection limit was 0.02 µg/kg. The vitamin B12 recovery from a spiking test was 99.62% for infant formula and 99.46% for cereal-based baby food. The sample preparation method developed in this study would be appropriate for the rapid determination of the vitamin B12 content in infant formula and baby foods with emulsified milk characteristics. The ability to obtain stable results more quickly and efficiently would also allow governments to exercise a more extensive quality control inspection and monitoring of products expected to contain vitamin B12. This method could be implemented in laboratories that require time and labor saving.

A Novel Electrochemical Method for Sensitive Detection of Melamine in Infant Formula and Milk using Ascorbic Acid as Recognition Element

  • Li, Junhua;Kuang, Daizhi;Feng, Yonglan;Zhang, Fuxing;Xu, Zhifeng;Liu, Mengqin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2499-2507
    • /
    • 2012
  • A novel and convenient electrochemical method has been developed for sensitive determination of melamine (MEL) using ascorbic acid (AA) as the recognition element. The working electrode employed in this method was modified with the nanocomposite of hydroxyapatite/carbon nanotubes to enhance the current signal of recognition element. The interaction between MEL and AA was investigated by fourier transform infrared spectroscopy and cyclic voltammetry, and the experimental results indicated that hydrogen bonding was formed between MEL and AA. Because of the existing hydrogen bonding and electrostatic interaction, the anodic peak current of AA was decreased obviously while the non-electroactive MEL added in. It illustrated that the MEL acted as an inhibitor to the oxidation of AA and the decreasing signals can be used to detect MEL. Under the optimal conditions, the decrease in anodic peak current of AA was proportional to the MEL concentrations ranging from 10 to 350 nM, with a detection limit of 1.5 nM. Finally this newly-proposed method was successfully employed to detect MEL in infant formula and milk, and good recovery was achieved.

Noise Reduction Method Using Randomized Unscented Kalman Filter for RGB+D Camera Sensors (랜덤 무향 칼만 필터를 이용한 RGB+D 카메라 센서의 잡음 보정 기법)

  • Kwon, Oh-Seol
    • Journal of Broadcast Engineering
    • /
    • v.25 no.5
    • /
    • pp.808-811
    • /
    • 2020
  • This paper proposes a method to minimize the error of the Kinect camera sensor by using a random undirected Kalman filter. Kinect cameras, which provide RGB values and depth information, cause nonlinear errors in the sensor, causing problems in various applications such as skeleton detection. Conventional methods have tried to remove errors by using various filtering techniques. However, there is a limit to removing nonlinear noise effectively. Therefore, in this paper, a randomized unscented Kalman filter was applied to predict and update the nonlinear noise characteristics, we next tried to enhance a performance of skeleton detection. The experimental results confirmed that the proposed method is superior to the conventional method in quantitative results and reconstructed images on 3D space.

A Membrane-Array Method to Detect Specific Human Intestinal Bacteria in Fecal Samples Using Reverse Transcriptase-PCR and Chemiluminescence

  • KIM PYOUNG IL;ERICKSON BRUCE D;CERNIGLIA CARL E.
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.310-320
    • /
    • 2005
  • A membrane-based oligonucleotide array was used to detect predominant bacterial species in human fecal samples. Digoxygenin-labeled 16S rDNA probes were generated by PCR from DNA that had been extracted from fecal samples or slurries. These probes were hybridized to an array of 120 oligonucleotides with sequences specific for 40 different bacterial species commonly found in human feces, followed by color development using an alkaline phosphatase-conjugated antibody and NBT /BCIP. Twenty of the species were detected by this method, but E. coli, which was present at $\~$1 $\times 10$^5$ CFU per gram feces, was not detected. To improve the sensitivity of this assay, reverse transcriptase-PCR was used to generate probes from RNA extracted from fecal cultures. Coupled with a chemiluminescence detection method, this approach lowered the detection limit for E. coli from $\~1$ $\times 10$^6$ to ${\leq}$ 1 $\times 10$^5$ These results indicate that the membrane-array method with reverse transcriptase-PCR and chemiluminescence detection can simultaneously identify bacterial species present in fecal samples at cell concentrations as low as${\leq}$ 1 $\times 10$^5$ CFU per gram.

Effective DNA extraction method to improve detection of Mycobacterium avium subsp. paratuberculosis in bovine feces

  • Park, Hong-Tae;Shin, Min-Kyoung;Sung, Kyung Yong;Park, Hyun-Eui;Cho, Yong-Il;Yoo, Han Sang
    • Korean Journal of Veterinary Research
    • /
    • v.54 no.1
    • /
    • pp.55-57
    • /
    • 2014
  • Paratuberculosis caused by Mycobacterium avium subsp. paratuberculosis (MAP) has extended latent periods of infection. Due to this property, difficulties in the detection of fecal shedder have been raised. A newly designed method for DNA extraction from fecal specimens, mGITC/SC was evaluated in terms of diagnostic efficiency. The detection limit of IS900 real-time PCR was about 50 MAP (1.5 cfu) in 250 mg of feces (6 cfu per g). Also, this DNA extraction method was faster and cheaper than that using commercial kit or other methods. Consequently, the mGITC/SC is an economical DNA extraction method that could be a useful tool for detecting MAP from fecal specimens.

Highly Sensitive and Naked Eye Dual-readout Method for ʟ-Cysteine Detection Based on the NSET of Fluorophore Functionalized Gold Nanoparticles

  • Fu, Xin;Liu, Yuan;Wu, Zhitao;Zhang, He
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1159-1164
    • /
    • 2014
  • A simple, highly sensitive and selective method based on the rhodamine B-covered gold nanoparticle with dual-readout (colorimetric and fluorometric) detection for $\small{L}$-cysteine is proposed. A mechanism is that citrate-stabilized AuNPs were modified with RB by electrostatic interaction, which enables the nanometal surface energy transfer (NSET) from the RB to the AuNPs, quenching the fluorescence. In the presence of $\small{L}$-cysteine, it was used as a competitor in the NSET by the strongly Au-S bonding to release RB from the Au surface and recover the fluorescence, and the red-to-purple color change quickly, which was monitored simply by the naked eye. Under the optimum conditions, the detection limit is as low as 10 nM. The method possessed the advantages of simplicity, rapidity and sensitivity at the same time. The method was also successfully applied to the determination of $\small{L}$-cysteine in human urine samples, and the results were satisfying.

A new cell-direct quantitative PCR based method to monitor viable genetically modified Escherichia coli

  • Yang Qin;Bo Qu;Bumkyu Lee
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.795-807
    • /
    • 2022
  • The development and commercialization of industrial genetically modified (GM) organisms is actively progressing worldwide, highlighting an increased need for improved safety management protocols. We sought to establish an environmental monitoring method, using real-time polymerase chain reaction (PCR) and propidium monoazide (PMA) treatment to develop a quantitative detection protocol for living GM microorganisms. We developed a duplex TaqMan quantitative PCR (qPCR) assay to simultaneously detect the selectable antibiotic gene, ampicillin (AmpR), and the single-copy Escherichia coli taxon-specific gene, D-1-deoxyxylulose 5-phosphate synthase (dxs), using a direct cell suspension culture. We identified viable engineered E. coli cells by performing qPCR on PMA-treated cells. The theoretical cell density (true copy numbers) calculated from mean quantification cycle (Cq) values of PMA-qPCR showed a bias of 7.71% from the colony-forming unit (CFU), which was within ±25% of the acceptance criteria of the European Network of GMO Laboratories (ENGL). PMA-qPCR to detect AmpR and dxs was highly sensitive and was able to detect target genes from a 10,000-fold (10-4) diluted cell suspension, with a limit of detection at 95% confidence (LOD95%) of 134 viable E. coli cells. Compared to DNA-based qPCR methods, the cell suspension direct PMA-qPCR analysis provides reliable results and is a quick and accurate method to monitor living GM E. coli cells that can potentially be released into the environment.

Development and Evaluation of a Badge-type Passive Sampler for the Measurement of Short-term Nitrogen Dioxide in Ambient Air (대기 중 이산화질소의 단기 측정을 위한 뱃지형 passive sampler의 개발 및 평가)

  • Kim Sun Kyu;Yim Bong Been;Jung Eui Suk;Kim Sun Tae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.1
    • /
    • pp.117-126
    • /
    • 2006
  • The purpose of this study is to develop a badge-type passive sampler for the measurement of short-term nitrogen dioxide and to evaluate its performance. The principle of the method is a colorimetric reaction of nitrogen dioxide with sulfanilic acid, N-1-naphthylethylendiamine, and phosphoric acid. First, it has been shown that the filter paper should be rinsed with ultrapure water and ultrasound, and then dried in a vacuumed desiccator. The concentration and volume of absorption reagent (triethanolamine) were $20\%$ and 100 ${\mu}L$, respectively. The extraction time was determined as 60 min. Second, duplicate measurements (n= 116) were carried out for evaluating the precision of the passive sampler. The relative error and the correlation coefficient between duplicates are $3.4\pm 3.0\%$ and 0.994, respectively. In addition, the $95\%$ confidence interval of intraclass correlation coefficient and the estimated value are 0.992$\sim$0.996 and 0.994, respectively. Third, a paired t-test was carried out for evaluating the accuracy of the passive sampler (n=40). In the result of the test, the $95\%$ confidence interval of the difference was -1.710 ppb <$\gamma$< 0.788 ppb. Finally, the average concentration of blanks, measurement detection limit, limit of detection, and limit of quantification are $2.4\pm 0.4$ ppb, 104 ppb, 3.8 ppb, and 7.0 ppb, respectively.

Comparison of Dissolved Ammonium Analytical Method in Seawater: Spetrophotometry and Fluorometry (해수 중 용존 암모늄 분석방법 비교: 분광광도법과 형광법)

  • SON, PURENA;PARK, JOONSEONG;RHO, TAEKEUN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.25 no.4
    • /
    • pp.81-96
    • /
    • 2020
  • Berthlot's reaction spectrophotometric method is generally used for the analysis of dissolved ammonium in seawater, but in recent years, a fluorescence method using an orthophthaldialdehyde-sulfite (OPA) fluorescent reagent is actively used internationally. In this study, we investigated the effects of the detection limit between the analysis methods, the reagent refractive index inherent in the spectrophotometric method, and the use of different calibration curves to understand the cause of the difference in dissolved ammonium concentration (about 0.31 𝜇M) observed in the seawater samples and a nutrient reference material between two institutions (KIOST (spectrophotometric method, one-order linear regression gradient only), Australia CSIRO (fluorescence method, quadratic formula)) conducted onboard the Australian R/V Investigator in 2017. The method detection limit (0.063 𝜇M) and the reagent refractive index background value (0.054 𝜇M) of the spectrophotometric method measured in this study could explain the difference in dissolved ammonium concentration values of the two institutes about 20% and 17%, respectively. However, when the concentration of the calibration curve of the spectrophotometric method was calculated using the same quadratic as the fluorescence method or the slope and intercept of linear regression, the difference in the dissolved ammonium concentration between the two institutions was reduced to less than the detection limit of the spectrophotometric method. Therefore, the difference in the concentration of dissolved ammonium between the two institutions, found in the nutrient reference materials and the seawater field sample during the international onboard nutrient inter-comparison experiment, may be attributed to be the effect of the different calibration curves used in the two methods rather than the effect of the difference in two analytical methods. When comparing the dissolved ammonium data from seawater samples in the future, it is recommended to pay attention to the information on the baseline, number of standard solutions, and calibration curve used in the analysis.