Browse > Article

A Membrane-Array Method to Detect Specific Human Intestinal Bacteria in Fecal Samples Using Reverse Transcriptase-PCR and Chemiluminescence  

KIM PYOUNG IL (Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration)
ERICKSON BRUCE D (Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration)
CERNIGLIA CARL E. (Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration)
Publication Information
Journal of Microbiology and Biotechnology / v.15, no.2, 2005 , pp. 310-320 More about this Journal
Abstract
A membrane-based oligonucleotide array was used to detect predominant bacterial species in human fecal samples. Digoxygenin-labeled 16S rDNA probes were generated by PCR from DNA that had been extracted from fecal samples or slurries. These probes were hybridized to an array of 120 oligonucleotides with sequences specific for 40 different bacterial species commonly found in human feces, followed by color development using an alkaline phosphatase-conjugated antibody and NBT /BCIP. Twenty of the species were detected by this method, but E. coli, which was present at $\~$1 $\times 10$^5$ CFU per gram feces, was not detected. To improve the sensitivity of this assay, reverse transcriptase-PCR was used to generate probes from RNA extracted from fecal cultures. Coupled with a chemiluminescence detection method, this approach lowered the detection limit for E. coli from $\~1$ $\times 10$^6$ to ${\leq}$ 1 $\times 10$^5$ These results indicate that the membrane-array method with reverse transcriptase-PCR and chemiluminescence detection can simultaneously identify bacterial species present in fecal samples at cell concentrations as low as${\leq}$ 1 $\times 10$^5$ CFU per gram.
Keywords
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Harmsen, H. M., G. C. Raangs, T. He, J. E. Degener, and G. W. Welling. 2002. Extensive set of 16S rRNA-based probes for detection of bacteria in human feces. Appl. Environ. Microbiol. 68: 2982- 2990   DOI   ScienceOn
2 Malinen, E., A. Kassinen, T. Rinttila, and A. Palva. 2003. Comparison of real-time PCR with SYBR Green I or 5'nuclease assays and dot-blot hybridization with rDNAtargeted oligonucleotide probes in quantification of selected faecal bacteria. Microbiology 149: 269- 277   DOI   PUBMED   ScienceOn
3 Manz, W., U. Szewzyk, P. Ericsson, R. Amann, K. H. Schleifer, and T. A. Stenstrom. 1993. In situ identification of bacteria in drinking water and adjoining biofilms by hybridization with 16S and 23S rRNA-directed fluorescent oligonucleotide probes. Appl. Environ. Microbiol. 59: 2293-2298   PUBMED
4 Sghir, A., G. Gramet, A. Suau, V. Rochet, P. Pochart, and J. Dore. 2000. Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl. Environ. Microbiol. 66: 2263- 2266   DOI   ScienceOn
5 Wang, R. F., W. W. Cao, and C. E. Cerniglia. 1997. PCR detection of Ruminococcus spp. in human and animal fecal samples. Mol. Cell. Probes 11: 259- 265   DOI   ScienceOn
6 Wang. R. F., M. L. Beggs, L. H. Robertson, and C. E. Cerniglia. 2002. Design and evaluation of oligonucleotidearray method for the detection of human intestinal bacteria in fecal samples. FEMS Microbiol. Lett. 213: 175- 182   DOI   ScienceOn
7 Wang, R. F., M. L. Beggs, B. D. Erickson, and C. E. Cerniglia. 2004. DNA microarray analysis of predominant human intestinal bacteria in fecal samples. Mol. Cell. Probes 18: 223- 234   DOI   ScienceOn
8 Alfreider, A., J. Pernthaler, R. Amann, B. Sattler, F. O. Glockner, A. Wille, and R. Psenner. 1996. Community analysis of the bacterial assemblages in the winter cover and pelagic layers of a high mountain lake by in situ hybridization. Appl. Environ. Microbiol. 62: 2138- 2144   PUBMED
9 Chadwick, R. W., S. E. George, and L. P. Claxton. 1992. Role of gastrointestinal mucosa and microflora in the bioactivation of dietary and environmental mutagens or carcinogens. Drug Metab. Rev. 24: 425- 492   DOI   ScienceOn
10 Kok, R. G., A. de Waal, F. Schut, G. W. Welling, G. Weenk, and K. J. Hellingwerf. 1996. Specific detection and analysis of a probiotic Bifidobacterium strain in infant feces. Appl. Environ. Microbiol. 62: 3668- 3672   PUBMED
11 Juretschko, S., G. Timmermann, M. Schmid, K. H. Schleifer, A. Pommerenning-Roser, H. P. Koops, and M. Wagner. 1998. Combination molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-likc bacteria as dominant populations. Appl. Environ. Microbiol. 64: 3042- 3051
12 Schwiertz, A., G. L. Blay, and M. Blaut. 2000. Quantification of different Eubacterium spp. in human fecal samples with species-specific 16S rRNA-targeted oligonucleotide probes. Appl. Environ. Microbiol. 66: 375- 382   DOI   ScienceOn
13 Wang, R. E., W. W. Cao, and C. E. Cerniglia. 1996. PCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples. Appl. Environ. Microbiol. 62: 1242- 1247   PUBMED
14 Lee, K.-H., G. S. Moon, J.-Y An, H. J. Lee, H. C. Chang. D. K. Chung, J. H. Lee, and J. K. Kim. 2002. Isolation of nisin-producing Lactobacillus lactis strain from Kimchi and characterization of its nisZ gene. J. Microbiol. Biotechnol. 12: 389- 397
15 Cerniglia, C. E., J. P. Freeman, W. Franklin, and L. D. Pack. 1982. Metabolism of azo dyes derived from benzidine, 3,3'dimethylbenzidine and 3,3'-dimethoxybenzidine to potentially carcinogenic aromatic amines by intestinal bacteria. Carcinogenesis 3: 1255- 1260   DOI   ScienceOn
16 Simon, G. L. and S. L. Gorbach. 1984. Intestinal flora in health and disease. Gastroenterology 86: 174- 193   PUBMED
17 Gibson, G. R., J. H. Cummings, and G. T. Macfarlane. 1988. Use of three-stage continuous culture system to study the effect of mucin on dissimilatory sulfate reduction and methanogenesis by mixed populations of human gut bacteria. Appl. Environ. Microbiol. 54: 2750- 2755   PUBMED
18 Hopkins, M. J., R. Sharp, and G. T. Macfarlane. 2001. Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles. Gut 48: 198- 205   DOI   ScienceOn
19 Drasar, B. S. and A. K. Roberts. 1990. Control of the large bowel microflora. pp. 95- 100. In Hill, M. J. and Marsh, B. S. (eds.), Human Microbiol Ecology. Boca Raton, CRC Press Inc
20 Falk, P. G., L. V. Hooper, T. Midtvedt, and J. I. Gordon. 1998. Creating and maintaining the gastrointestinal ecosystem: What we know and need to know from gnotobiology. Microbiol, Mol. Biol. Rev. 62: 1157- 1170   PUBMED
21 Wang, R. F., S.-J. Kim, L. H. Robertson, and C. E. Cerniglia. 2002. Development of a membrane-array method for the detection of human intestinal bacteria in fecal samples. Mol. Cell. Probes 16: 341- 350   DOI   ScienceOn
22 Becker, S., P. Boger, R. Oehlmann, and A. Ernst. 2000. PCR bias in ecological analysis: A case study for quantitative taq nuclease assays in analyses of Microbiol communities. Appl. Environ. Microbiol. 66: 4945- 4953   DOI   ScienceOn
23 Cerniglia, C. E., P. C. Howard, P. P. Fu, and W. Franklin. 1984. Metabolism of nitropolycyclic aromatic hydrocarbons by human intestinal microllora. Biochem. Biophys. Res. Commun. 123: 262- 270   DOI   ScienceOn
24 Moore, W. E. C. and L. H. Moore. 1995. Intestinal floras of populations that have a high risk of colon cancer. Appl. Environ. Microbiol. 61: 3202- 3207   PUBMED
25 Matsuki, T., K. Watanabe, R. Tanaka, M. Fukuda, and H. Oyaizu. 1999. Distribution of bifidobacterial species in human intestinal microflora examined with 16S rRNA-genetargeted species-specific primers. Appl. Environ. Microbiol. 65: 4506-4512   PUBMED
26 Tannock, G. W. 1995. Normal Microflora: An Introduction to Microbes Inhabiting the Human Body. Chapman & Hall, London, United Kingdom
27 Dore, J., A. Sghir, G. Gramet, G. Corthier, and P. Pochart. 1998. Design and evaluation of a 16S rRNA-targeted oligonucleotide probe for specific detection and quantitation of human faecal Bacteroides populations. Syst. Appl. Microbiol. 21: 65-71   DOI   PUBMED   ScienceOn
28 Hwang, Y.-H. and H.-S. Lee. 2002. Antibacterial activity of Pinus densiflora leaf-derived components toward human intestinal bacteria. J. Microbiol. Biotechnol . 12: 610- 616
29 Kreader, C. A. 1995. Design and evaluation of Bacteroides DNA probes for the specific detection of human fecal pollution. Appl. Environ. Microbiol. 61: 1171- 1179   PUBMED
30 Marteau, P., P. Pochart, J. Dore, C. Maillet, A. Bernalier, and G. Corthier. 2001. Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl. Environ. Microbiol. 67: 4939- 494   DOI   ScienceOn
31 Song, Y.-L., L. Kato, C. X. Liu, Y. Matsumya, H. Kato, and K. Watanabe. 2000. Rapid identification of 11 human intestinal Lactobacillus species by multiplex PCR assays using group- and species-specific primers derived from the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA. FEMS Microbiol. Lett. 187: 167- 173   PUBMED
32 Fuller, R. 1989. Probiotics in man and animals. J. Appl. Bacteriol. 66: 365- 378   DOI   PUBMED
33 Matsuki, T., K. Watanabe, J. Fujimoto, Y. Miyamoto, T. Takada, K. Matsumoto, H. Oyaizu, and R. Tanaka. 2002. Development of 16S rRNA-gene targeted group-specific primers for the detection and identification of predominant bacteria in human feces. Appl. Environ. Microbiol. 68: 5445-5451   DOI   ScienceOn
34 Kenzaka, T., N. Yamaguchi, K. Tani, and M. Nasu, 1998. rRNA-targeted fluorescent in situ hybridization analysis of bacterial community structure in river water. Microbiology 144: 2085- 2093   DOI   ScienceOn
35 Kim, K. Y., P. M. Davidson, and H. J. Chung. 2000. AntiMicrobiol effectiveness of pine extract on foodborne illness bacteria. J. Microbiol. Biotechnol. 10: 227- 232
36 Langendijk, P. S., F. Schut, G. J. Jansen, G. C. Raangs, G. R. Kamphuis, M. F. Wilkinson, and G. W. Welling. 1995. Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl. Environ. Microbiol. 61: 3069- 3075   PUBMED
37 Drasar, B. S. and B. I. Duerden. 1991. Anaerobes in the normal flora of man, pp. 162- 179. In Duerden, B. I. and Drasar, B. S. (eds.), Anaerobes in Human Disease. WileyLiss, New York, NY
38 Bae, E.-A., N.-Y. Kim, M. J. Han, M.-K. Choo, and D.-H. Kim. 2003. Transformation of ginsenosides to compound K (IH-901) by lactic acid bacteria of human intestine. J. Microbiol. Biotechnol. 13: 9- 14