• Title/Summary/Keyword: methane emission

Search Result 392, Processing Time 0.026 seconds

Methane Emissions from Dry Cows Fed Grass or Legume Silage

  • Kasuya, Hirotaka;Takahashi, Junichi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.5
    • /
    • pp.563-566
    • /
    • 2010
  • Using an open-circuit system, we compared the methane ($CH_4$) emission from dry cows fed first-cut Timothy silage ($1^{st}$ TY), second-cut Timothy silage ($2^{nd}$ TY), second-cut Italian ryegrass silage ($2^{nd}$ IR), third-cut Italian ryegrass silage ($3^{rd}$ IR), or second-cut red clover silage ($2^{nd}$ RC) as the sole feed. The methane emission ranged from 258.2 L $day^{-1}$ to 396.5 L $day^{-1}$. The methane emission from dry cows fed red clover silage was relatively lower than that from dry cows fed grass silage. However, the methane emission per unit digestible neutral detergent fiber (NDF) intake (dNDFI) did not differ significantly between the experimental silages. The methane emission was significantly correlated with the NDF intake and digestibility. Methane emission had a significant correlation with the quadratic function of dNDFI. The differences in the daily volume of methane emission from cows fed different forages can be explained by dNDFI.

Methanogenesis and Methane Oxidation in Paddy Fields under Organic Fertilization

  • Kim, Chungwoo;Walitang, Denver I.;Sa, Tongmin
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.295-312
    • /
    • 2021
  • BACKGROUND: Global warming is one of the most pressing environmental issues which concomitantly complicates global climate change. Methane emission is a balance between methanogenesis and methane consumption, both of which are driven by microbial actions in different ecosystems producing methane, one of the major greenhouse gases. Paddy fields are major sources of anthropogenic methane emissions and could be compounded by organic fertilization. METHODS AND RESULTS: Literature reviews were conducted to give an overview of the global warming conditions and to present the relationship of carbon and methane to greenhouse gas emissions, and the need to understand the underlying processes of methane emission. A more extensive review was done from studies on methane emission in paddy fields under organic fertilization with greater emphasis on long term amendments. Changes in paddy soils due to organic fertilization include alterations of the physicochemical properties and changes in biological components. There are diverse phylogenetic groups of methanogens and methane oxidizing bacteria involved in methane emission. Also, multiple factors influence methanogenesis and methane oxidation in rice paddy fields under organic fertilization and they should be greatly considered when developing mitigating steps in methane emission in paddy fields especially under long term organic fertilization. CONCLUSION(S): This review showed that organic fertilization, particularly for long term management practices, influenced both physicochemical and biological components of the paddy fields which could ultimately affect methanogenesis, methane oxidation, and methane emission. Understanding interrelated factors affecting methane emission helps create ways to mitigate their impact on global warming and climate change.

Estimation of Methane Emission Flux Using a Laser Methane Detector at a Solid Waste Landfill (레이저메탄검지기를 활용한 폐기물매립지 표면발생량 산정에 관한 연구)

  • Kang, Jong-Yun;Park, Jin-Kyu;Lee, Nam-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.3
    • /
    • pp.78-84
    • /
    • 2015
  • The aim of this study was to evaluate methane emission flux based on spatial methane concentration using laser methane detector, and geospatial methodology (Inverse distance weighting) at a landfill. The obtained results showed that the spatial methane concentrations were in good agreement with the methane emission fluxes. Thus, it was concluded that the methane emission flux could be derived from spatial methane concentrations. In addition, the results of the geospatial calculations showed that 12.85% of the total area contributed more than 42.21% of total flux. This suggested that the geospatial methodology might be essential in chamber method to determine accurate methane emission fluxes from landfills.

Comparison of Greenhouse Gas Emission from Landfills by Different Scenarios (매립지의 온실가스 배출량 산정 시나리오에 따른 온실가스 배출량 비교)

  • Kim, Hyun-Sun;Choi, Eun-Hwa;Lee, Nam-Hoon;Lee, Seung-Hoon;Cheong, Jang-Pyo;Lee, Chae-Young;Yi, Seung-Muk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.3
    • /
    • pp.344-352
    • /
    • 2007
  • Quantifying the methane emission from landfills is important to evaluate measures for reduction of greenhouse gas emissions. To estimate methane emission for the entire landfills from 1990 through 2004 in Korea, Tier 1 and 2 methodologies were used. In addition, five different scenarios were adopted to identify the effect of important variables on methane emission. The trends of methane emission using Tier 1 were similar to the disposed waste amount. Methane emission using Tier 2 increased as the degradation of waste was gradually proceeded. This result indicates that disposed waste amount and methane generation rate are the important variables for the estimation of methane emission by Tier 1 and 2, respectively. As for the different scenarios, methane emission was highest with scenario I that the entire landfills in Korea were regarded as one landfill. Methane emissions by scenario III and IV considering different $DOC_F$ values with the waste type and different MCF values with the height of waste layer, respectively, were underestimated compared to scenario II. This result indicates that the method of scenario I employed to most previous studies may lead to the overestimation of methane emission. Therefore, more careful consideration of the variables should be needed to develop the methodologies of greenhouse gas emission in landfills along with the characteristics of disposed waste in Korea.

Dietary manipulation: a sustainable way to mitigate methane emissions from ruminants

  • Haque, Md Najmul
    • Journal of Animal Science and Technology
    • /
    • v.60 no.6
    • /
    • pp.15.1-15.10
    • /
    • 2018
  • Methane emission from the enteric fermentation of ruminant livestock is a main source of greenhouse gas (GHG) emission and a major concern for global warming. Methane emission is also associated with dietary energy lose; hence, reduce feed efficiency. Due to the negative environmental impacts, methane mitigation has come forward in last few decades. To date numerous efforts were made in order to reduce methane emission from ruminants. No table mitigation approaches are rumen manipulation, alteration of rumen fermentation, modification of rumen microbial biodiversity by different means and rarely by animal manipulations. However, a comprehensive exploration for a sustainable methane mitigation approach is still lacking. Dietary modification is directly linked to changes in the rumen fermentation pattern and types of end products. Studies showed that changing fermentation pattern is one of the most effective ways of methane abatement. Desirable dietary changes provide two fold benefits i.e. improve production and reduce GHG emissions. Therefore, the aim of this review is to discuss biology of methane emission from ruminants and its mitigation through dietary manipulation.

Surface Flux Measurements of Methane from Lamdfills by Closed Chamber Technique and its Validation (플럭스챔버에 의한 매립지표면 메탄의 배출량 측정과 분석)

  • 김득수;장영기;전의찬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.5
    • /
    • pp.499-509
    • /
    • 2000
  • Next to carbon dioxide, methane is the second largest contributor to global warming among anthropogenic greenhouse gases. Methane is emitted into the atmosphere from both natural and anthropogenic sources. Natural sources include wetlands, termites, wildries, ocean and freshwater. Anthropogenic sources include landfill, natural gas and oil production, and agriculture. These manmade sources account for about 70% of total global methane emissions; and among these, landfill accounts for approximately 10% of total manmade emissions. Solid waste landfills produce methane as bacteria decompose organic wastes under anaerobic conditions. Methane accounts for approximately 45 to 50 percent of landfill gas, while carbon dioxide and small quantities of other gases comprise the remaining to 50 to 55 percent. Using the closed enclosure technique, surface emission fluxes of methane from the selected landfill sites were measured. These data were used to estimate national methane emission rate from domestic landfills. During the three different periods, flux experiments were conducted at the sites from June 30 through December 26, 1999. The chamber technique employed for these experiments was validated in situ. Samples were collected directly by on-site flux chamber and analyzed for the variation of methane concentration by gas chromatography equipped with FID. Surface emission rates of methane were found out to vary with space and time. Significant seasonal variation was observed during the experimental period. Methane emission rates were estimated to be 64.5$\pm$54.5mgCH$_4$/$m^2$/hr from Kimpo landifll site. 357.4$\pm$68.9mgCH$_4$/$m^2$/hr and 8.1$\pm$12.4mgCH$_4$/$m^2$/hr at KwanJu(managed and unmanaged), 472.7$\pm$1056mgCH$_4$/$m^2$/hr at JonJu, and 482.4$\pm$1140 mgCH$_4$/$m^2$/hr at KunSan. These measurement data were used for the extrapolation of national methane emission rate based on 1997 national solid waste data. The results were compared to those derived by theoretical first decay model suggested by IPCC guidelines.

  • PDF

Effects of cultivation methods on methane emission in rice paddy

  • Kim, Sukjin;Choi, Jong-Seo;Kang, Shin-gu;Park, Jeong-wha;Yang, Woonho
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.319-319
    • /
    • 2017
  • Methane is the main greenhouse gas released from rice paddy field. Methane from paddy fields accounts for 11 % of the global total methane emission. The global warming potential (GWP) of methane is 25 times more than that of carbon dioxide on a mass basis. It is well known that most effective practice to mitigate methane in paddy is related to the water management during rice growing season and the use of organic matters. This study was conducted to investigate the effects of tillage and cultivation method on methane emission in paddy. Tillage (tillage and no-tillage) and cultivation methods (transplanting and direct seeding) were combined tillage-transplanting (T-T), tillage-wet hill seeding (T-W), tillage-dry seeding (T-D) and no-till dry seeding (NT-D) to evaluate methane mitigation efficiency. Daily methane emission was decreased on seeding treatments (T-W, T-D, NT-D) than transplanting treatment (T-T). Amount of methane emission during rice growing season is highest in T-T ($411.7CH_4\;kg\;ha^{-1}y^{-1}$) and lowest in NT-D treatment (89.7). In T-W and T-D treatments, methane emissions were significantly decreased by 36 and 51 % respectively compared with T-T. Methane emissions were highly correlated with the dry weight of whole rice plant ($R^2=0.62{\sim}0.93$). T-T treatment showed highest $R^2$ (0.93) among the four treatments. Rice grain yields did not significantly differ with the tillage and cultivation methods used. These results suggest that direct seeding practice in rice production could mitigate the methane emissions without loss in grain yield.

  • PDF

Effect of Soil Texture and Tillage Method on Rice Yield and Methane Emission during Rice Cultivation in Paddy Soil

  • Cho, Hyeon-Suk;Seo, Myung-Chul;Kim, Jun-Hwan;Sang, Wan-gyu;Shin, Pyeong;Lee, Geon Hwi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.564-571
    • /
    • 2016
  • As the amount of rice straw collected increases, green manure crops are used to provide the needed organic matter. However, as green manure crops generate methane in the process of decomposition, we tested with different tillage depths in order to reduce the emission. The atmosphere temperature of the chamber was $25{\sim}40^{\circ}C$ during the examination of methane and soil temperature was $2{\sim}10^{\circ}C$ lower than air temperature. The redox potential (Eh) of the soil drastically fell right before irrigated transplanting and showed -300~-400 mV during the cultivating period of rice (7~106 days after transplant). When hairy vetch was incorporated to soil and the field was not irrigated, the generation of methane did not occur from 12 to 4 days before transplanting rice and started after irrigation. Regarding the pattern of methane generation during the cultivation of rice, methane was generated 7 days after transplanting, reached the pinnacle at by 63~74 days after transplanting, rapidly decreased after 86~94 days past transplanting and stopped after 106 days past transplanting. When tested by different soil types, methane emission gradually increased in loam and clay loam during early transplant, whereas it sharply increased in sandy loam. The total amount of methane emitted was highest in sandy loam, followed by loam and clay loam. In all three soil types, methane emission significantly reduced when tillage depth was 20 cm compared to 10 cm. The rice growths and yield were not affected by tillage depth. Therefore, reduction of methane emission could be achieved when application hairy vetch to the soil with tillage depth of 20 cm in paddy soil.

Assessment of Methane (CH4) Emissions from Rice Paddy and Crop Residues Burning in 2011 with the IPCC Guideline Methodology

  • Choi, Eun Jung;Lee, Jong Sik;Jeong, Hyun Cheol;Kim, Gun Yeob;So, Kyu Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.575-578
    • /
    • 2013
  • Rice cultivation in the paddy field and the burning of crop residues have been identified as the important sources of methane emission in agricultural sector. This study aimed at assessment of the methane emission from croplands in the year of 2011 with the IPCC guideline methodology. Methane from rice cultivation was emitted 6,813 $CO_2$-eq Gg in 2011. According to the water management, methane emission amounts by continuously flooded and intermittently flooded were 1,499 and 5,314 $CO_2$-eq Gg, respectively. Methane emission by crop residues burning was highest in red pepper and followed by rice straw, pulses and barely in 2011. Methane emission by field burning was very little compared with rice cultivation.

Effects of Water Management Rice Straw and Compost on Methane Emission in Dry Seeded Rice (벼 건답직파재배에서 물관리와 볏짚 및 퇴비가 메탄배출에 미치는 영향)

  • Ko, Jee-Yeon;Kang, Hang-Won;Park, Kyong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.3
    • /
    • pp.212-217
    • /
    • 1996
  • Investgated in relation to Methane emission on dry seeded rice culture was flooding and intermittent irrigation and application time of rice straw in clayey soil. Negative peaks of the methane emission before 3 leaves stage which were never seen in the transplanting cultivation was found and the highest peak was come out at the heading stage. Total amount of emitted methane was lower about 40% than that of the transplanted. Methane emission decreased about 19% by intermittent irrigation. Compost and NPK application reduced methane about 70% and 80% in comparisin with rice straw. Rice straw application one month before sowing reduced methane emission than the application just before sowing.

  • PDF