• 제목/요약/키워드: metformin

Search Result 184, Processing Time 0.022 seconds

Pharmacotherapy for Obesity in Mood Disorders (기분장애 환자의 비만에 대한 약물치료)

  • Sohn, Inki;Lee, Kyu-Hang
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.22 no.2
    • /
    • pp.63-70
    • /
    • 2014
  • The prevalence of obesity and overweight is increasing in mood disorder, and it is connected to an increased cardiovascular mortality. Because of them, treatment for obesity may be an essential part of mood disorder treatment. Similar to the general population, non-pharmacological treatment such as correction of life habits should be considered first of all. If this approaches are fail, pharmacological treatment for obesity would be required as next step. Any drug for obesity is not approved officially in mood disorder. So approved drugs in general population, and drugs supported by several studies are prescribed in clinical settings. Several treatment guidelines for mood disorder and studies support that orlistat, metformin, topiramate and bupropion is effective and safe.

  • PDF

Effects of AMP-activated Protein Kinase Activating Compounds and Its Mechanism (AMP-activated protein kinase 활성화 기전과 관련 약물의 효과)

  • Choi, Hyoung Chul
    • Journal of Yeungnam Medical Science
    • /
    • v.29 no.2
    • /
    • pp.77-82
    • /
    • 2012
  • AMP-activated protein kinase (AMPK) is an important cellular fuel sensor. Its activation requires phosphorylation at Thr-172, which resides in the activation loop of the ${\alpha}1$ and ${\alpha}2$ subunits. Several AMPK upstream kinases are capable of phosphorylating AMPK at Thr-172, including LKB1 and CaMKK${\beta}$ ($Ca^{2+}$/calmodulin-dependent protein kinase kinase${\beta}$). AMPK has been implicated in the regulation of physiological signals, such as in the inhibition of cholesterol fatty acid, and protein synthesis, and enhancement of glucose uptake and blood flow. AMPK activation also exhibits several salutary effects on the vascular function and improves vascular abnormalities. AMPK is modulated by numerous hormones and cytokines that regulate the energy balance in the whole body. These hormone and cytokines include leptin, adiponectin, ghrelin, and even thyroid hormones. Moreover, AMPK is activated by several drugs and xenobiotics. Some of these are in being clinically used to treat type 2 diabetes (e.g., metformin and thiazolidinediones), hypertension (e.g., nifedipine and losartan), and impaired blood flow (e.g., aspirin, statins, and cilostazol). I reviewed the precise mechanisms of the AMPK activation pathway and AMPK-modulating drugs.

  • PDF

Dual Drug-Loaded Liposomes for Synergistic Efficacy in MCF-7 Breast Cancer Cells and Cancer Stem Cells

  • Park, Hee-Bin;Kim, Yun-Ji;Lee, Seong-Min;Park, James S.;Kim, Keun-Sik
    • Biomedical Science Letters
    • /
    • v.25 no.2
    • /
    • pp.159-169
    • /
    • 2019
  • Breast cancer stem cells (BCSCs) in breast cancer cells have self-renewal ability and differentiation potential. They are also resistant to drugs after chemotherapy. To overcome this resistance, we designed negatively charged 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG)-based liposomes for drug delivery. These liposomes have enhanced the therapeutic effects of a range of antitumor therapies by increasing the cellular uptake and improving drug delivery to targets sites. In this study, we investigated whether DMPG-POPC liposomes, including the neutral lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholin (POPC), can specifically bind to MCF-7 breast cancer cells and increase cellular uptake compared with that by CHOL-POPC liposomes. We also estimated the cytotoxicity of DMPG-POPC liposomes encapsulated with both metformin (Met) and sodium salicylate (Sod) against breast cancer cells and BCSCs compared with that of the free drugs. Our results demonstrated that these dual drug-encapsulated liposomes significantly enhanced the cytotoxic and anti-colony formation abilities compared with individual drug-encapsulated liposomes or free drugs in BCSCs. Overall, our results suggest that DMPG-POPC liposomes containing two drugs (Met + Sod) show promise for synergistic anti-cancer therapy of breast cancer by increasing drug delivery efficiency into breast cancer cells and BCSCs.

Milk Fermented with Pediococcus acidilactici Strain BE Improves High Blood Glucose Levels and Pancreatic Beta-Cell Function in Diabetic Rats

  • Widodo Widodo;Hanna Respati Putri Kusumaningrum;Hevi Wihadmadyatami;Anggi Lukman Wicaksana
    • Food Science of Animal Resources
    • /
    • v.43 no.1
    • /
    • pp.170-183
    • /
    • 2023
  • This study evaluated the effects of milk fermented with Pediococcus acidilactici strain BE and Pediococcus pentosaceus strain M103 on diabetes in rats (Rattus norvegicus). The bacteria were separately used as starter cultures for milk fermentation, and the products were then fed to diabetic rats for 15 days. Blood glucose levels, immunohistochemical and histological indicators, lipid profiles, and total lactic acid bacterium counts were evaluated before and after treatment. The administration of milk fermented with P. acidilactici strain BE reduced blood glucose levels from 410.27±51.60 to 304.07±9.88 mg/dL (p<0.05), similar to the effects of metformin (from 382.30±13.39 mg/dL to 253.33±40.66 mg/dL, p<0.05). Increased insulin production was observed in diabetic rats fed milk fermented with P. acidilactici strain BE concomitant with an increased number and percentage area of immunoreactive beta-cells. The structure of insulin-producing beta-cells was improved in diabetic rats fed milk fermented with P. acidilactici strain BE or metformin (insulin receptor substrate scores of 5.33±0.94 and 3.5±0.5, respectively). This suggests that the administration of milk fermented with P. acidilactici BE potentially reduces blood glucose levels and improves pancreatic beta-cell function in diabetic rats.

Anti-obese and Blood Flow Improvement Activities of Ginseng Berry on the 45%Kcal High Fat Diet Supplied Mouse

  • Lee, Sol;Lee, Hae-Jeung;Chun, Yoon-Seok;Seol, Du-jin;Kim, Jong-Kyu;Ku, Sae-Kwang;Lee, Young-Joon
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.22 no.1
    • /
    • pp.107-127
    • /
    • 2018
  • Objectives : The present study investigated the anti-obese and blood flow improvement activities of aqueous extracts of ginseng berry (GBe) on the mild diabetic obese mice as compared with metformin. Methods : After end of 56 days of continuous oral administrations of GBe 150, 100 and 50 mg/kg, or metformin 250 mg/kg, anti-obese and blood flow improvement effects - the changes of body weights, body and abdominal fat density by in live dual-energy x-ray absorptionmetry (DEXA), tail bleeding time, prothrombin time (PT), activated partial thromboplastin time (aPTT), serum total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL) and high density lipoprotein (HDL) levels, aorta and serum cyclic guanosine monophosphate (cGMP), nitric oxide (NO) and endothelin (ET)-1 levels, aorta phosphorylated PI3K (pPI3K), phosphorylated Akt (pAkt) and phosphorylated p38 MAPK (pp38 MAPK) levels were systemically analyzed. In addition, aorta vascular dilation and constriction related gene mRNA expressions - PI3K, Akt, eNOS, p38 MAPK and ET-1 were also analyzed by realtime RT-PCR. Results : The obesity and related blood flow impairment, induced by 84 days of continuous HFD supply, were significantly inhibited by 56 days of continuous oral treatment of GBe 150, 100 and 50mg/kg, dose-dependently, and they also dramatically normalized the changes of the aorta vascular dilation and constriction related gene mRNA expressions, also dose-dependently. Especially, GBe 150 mg/kg constantly showed favorable inhibitory activities against type II diabetes related obesity and vascular disorders through PI3K/Akt pathway and p38 MAPK mediated cGMP, NO and ET-1 expression modulatory activities, as comparable to those of metformin 250 mg/kg in HFD mice. Conclusion : By assessing the key parameters for anti-obese and blood flow improvement activities on the HFD-induced mild diabetic obese mice, the present work demonstrated that GBe 150, 100 and 50 mg/kg showed favorable anti-obese and blood flow improvement effects in HFD-induced type II diabetic mice, through PI3K/Akt pathway and p38 MAPK mediated cGMP, NO and ET-1 expression modulatory activities.

Clinical Use of Oral Hypoglycemic Agents (경구혈당강하제의 사용법)

  • Lee, Tai-Hee
    • The Journal of the Korean life insurance medical association
    • /
    • v.17
    • /
    • pp.21-30
    • /
    • 1998
  • 인슐린의존형당뇨병 환자의 혈당조절의 방법으로 먼저 식이요법과 운동이 권장되며, 이러한 방법으로 혈당조절이 만족스럽지 않을 때 경구혈당강하제를 사용하는 것은 혈당조절과 합병증 예방에 중요한 역할을 할 수 있다. 국내에서는 경구혈당강하제로 설폰요소제, 비구아나이드제인 메트포르민(metformin) 및 알파글루코시다제(${\alpha}$-glucosidase) 억제제인 아카보스(acarbose) 등이 사용되고 있다. 새로 개발중인 트로글리타존, 지방산 산화 억제제 등의 약제는 아직 임상에서 널리 사용되고 있지는 않다.

  • PDF

Anti-Diabetic Medications Do Not Influence Risk of Lung Cancer in Patients with Diabetes Mellitus: a Systematic Review and Meta-analysis

  • Nie, Shu-Ping;Chen, Hui;Zhuang, Mao-Qiang;Lu, Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6863-6869
    • /
    • 2014
  • Objectives: Several preclinical and observational studies have shown that anti-diabetic medications (ADMs) may modify the risk of lung cancer. We performed a systematic review and meta-analysis evaluating the effect of metformin, sulfonylureas (SUs), thiazolidinediones (TZDs), and insulin on the risk of lung cancer in patients with diabetes mellitus (DM). Materials and Methods: We conducted a systematic search of Pubmed and Web of Science, up to August 20, 2013. We also searched the Conference Proceedings Citation Index (CPCI) and China National Knowledge Infrastructure (CNKI) for abstracts from major meetings. Fixed or random effect pooled measures were selected based on heterogeneity among studies, which was evaluated using Q test and the I2 of Higgins and Thompson. Meta-regression was used to explore the sources of between-study heterogeneity. Publication bias was analyzed by Begg's funnel plot and Egger's regression test. Associations were assessed by odds ratios (ORs) with 95% confidence intervals (CIs). Results: A total of 15 studies (11 cohort, 4 case-control) were included in this meta-analysis. In observational studies no significant association between metformin (n=11 studies; adjusted OR=0.99, 95%CI: 0.87-1.12), SUs (n=5 studies; adjusted OR=0.98, 95%CI: 0.79-1.22), or TZDs (n=7 studies; adjusted OR=0.92, 95%CI: 0.75-1.13), insulin (n=6 studies; adjusted OR=1.13, 95%CI: 0.79-1.62) use and risk of developing lung cancer was noted. There was considerable inherent heterogeneity between studies not explained by study design, setting, or location. Conclusions: Meta-analysis of existing studies does not support a protective or harmful association between ADMs use and risk of lung cancer in patients with DM. There was considerable heterogeneity across studies, and future, well-designed, prospective studies would be required for better understanding of any association.

Cost-Effectiveness Analysis of Glimepiride or Pioglitazone in Combination with Metformin in Type-2 Diabetic Patients (제2형 당뇨병 환자에 대한 메트포르민-글리메피리드 병합요법과 메트포르민-피오글리타존 병합요법의 비용-효과분석)

  • Lim, Kyung-Hwa;Shin, Hyun-Taek;Sohn, Hyun-Soon;Oh, Jung-Mi;Lee, Young-Sook
    • Korean Journal of Clinical Pharmacy
    • /
    • v.19 no.2
    • /
    • pp.96-104
    • /
    • 2009
  • 배경: 당뇨병 환자에게 관상동맥심질환은 생존률, 건강 상태 유지 및 삶의 질에 주요한 영향을 미치는 합병증이며 적극적인 당뇨병 치료는 이러한 심혈관 합병증을 예방할 수 있으나 당뇨병의 적극적 치료와 관리에는 많은 비용이 소요된다. 목적: 제2형 당뇨병 환자를 대상으로 메트포르민과 글리메피리드 병합요법과 메트포르민과 피오글리타존 병합요법의 비용-효과성을 비교하고자 하였다. 연구방법: 마르코프 코호트 프로세스(Markov Cohort Process Model) 모형을 이용하여 비용-효과분석을 실시하였다. 연장된 수명 (life years gained, LYG)과 삶의 질(quality)을 보정하여 증가된 QALYs를 주요 효과 지표로 측정하였고, 총비용으로는 직접의료비용과, 환자와 가족의 교통비를 직접비의료비용으로 고려하였고 환자와 가족의 시간비용을 간접비용으로 포함하였다. 연구결과: 비용-효과분석 결과, 메트포르민과 글리메피리드 병합요법의 경우 총 비용은 5,962,288원, 효과는 7.94LYG, 6.43QALY이었다. 반면 메트포르민과 피오글리타존 병합요법은 총 비용 10,982,243원, 효과 8.62LYG, 6.99QALY으로, 점증적 비용-효과비(ICER)는 7,402,663원/LYG과 8,934,546원/QALY 이었다. 결론: 우리 사회의 연장된 수명(LYG)에 따른 지불의사가 700만원 이하인 경우는 메트포르민과 글리메피리드 병합요법이 비용-효과적인 대안이며 700만원 이상인 경우에는 메트포르민과 피오글리타존 병합요법이 비용-효과적인 대안이 될 수 있다.

  • PDF

Anti-obese related pharmacological effects of standard potato protein extracts on the 45%Kcal high fat diet supplied mice

  • Kang, Su-Jin;Song, Chang-Hyun;Kim, Jong-Kyu;Chun, Yoon-Seok;Han, Chang-Hyun;Lee, Young-Joon;Ku, Sae-Kwang
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.77-107
    • /
    • 2018
  • Objectives : In present study, therefore, possible beneficial pharmacological activities of standard potato protein extracts (SPE) were observed on the mild diabetic obese mice. Methods : After end of 12 weeks of continuous oral administrations of three different dosages of SPE 400, 200 and 100 mg/kg, or metformin 250 mg/kg, analyzed the hepatoprotective, hypolipidemic, hypoglycemic, nephroprotective and anti-obesity effects, separately. In addition, liver antioxidant defense systems were additionally measured with lipid metabolism-related genes expressions and hepatic glucose-regulating enzyme activities for action mechanism. Results : All of diabetes and related complications including obesity were significantly inhibited by treatment of SPE 400, 200 and 100 mg/kg, dose-dependently, and they also dramatically normalized the hepatic lipid peroxidation and depletion of liver endogenous antioxidant defense system, the changes of the hepatic glucose-regulating enzyme activities, also changes of the lipid metabolism-related genes expressions including hepatic $AMPK{\alpha}1$ and $AMPK{\alpha}2$ mRNA expressions, dose-dependently. Especially, SPE 200 mg/kg constantly showed favorable inhibitory activities against type II diabetes and related complications as comparable to those of metformin 250 mg/kg in HFD mice, respectively. Conclusions : The present work demonstrated that SPE 400, 200 and 100 mg/kg showed favorable anti-diabetic and related complications including obesity refinement activities in HFD mice, through AMPK upregulation mediated hepatic glucose enzyme activity and lipid metabolism-related genes expression, antioxidant defense system and pancreatic lipid digestion enzyme modulatory activities.

Anti-diabetic Mechannism Study of Korean Red Ginseng by Transcriptomics (전사체 프로파일을 이용한 고려 홍삼의 항당뇨 기전 연구)

  • Yuan, Hai-Dan;Shin, En-Jung;Chung, Sung-Hyun
    • YAKHAK HOEJI
    • /
    • v.52 no.5
    • /
    • pp.345-354
    • /
    • 2008
  • This study was designed to investigate the anti-diabetic effect and mechanism of Korean red ginseng extract through transcriptomics in C57BL/KsJ db/db mice. The db/db mice were randomly divided into six groups: diabetic control group (DC), red ginseng extract low dose group (RGL, 100 mg/kg), red ginseng extract high dose group (RGH, 200 mg/kg), metformin group (MET, 300 mg/kg), glipizide group (GPZ, 15 mg/kg) and pioglitazone group (PIO, 30 mg/kg), and treated with drugs once per day for 10 weeks. At the end of treatment, we measured blood glucose, insulin, hemoglobin A1c (HbA1c), triglyceride (TG), adiponectin, leptin, non-esterified fatty acid (NEFA). RGL-treated group lowered the blood glucose and HbA1c levels by 19.6% and 11.4% compared to those in diabetic control group. In addition, plasma adiponectin and leptin levels in RGL-treated groups were increased by 20% and 12%, respectively, compared to those in diabetic control. Morphological analyses of liver, pancreas and epidydimal adipose tissue were done by hematoxylin-eosin staining, and pancreatic islet insulin and glucagon levels were detected by double-immunofluorescence staining. RGL-treated group revealed higher insulin contents and lower glucagon contents compared to diabetic control. To elucidate an action mechanism of Korean red ginseng, DNA microarray analyses were performed in liver and fat tissues, and western blot and RT-PCR were conducted in liver for validation. According to hierarchical clustering and principal component analysis of gene expression Korean red ginseng treated groups were close to metformin treated group. In summary, Korean red ginseng lowered the blood glucose level through protecting destruction of islet cells and shifting glucose metabolism from hepatic glucose production to glucose utilization and improving insulin sensitivity through enhancing plasma adiponectin and leptin levels.