• Title/Summary/Keyword: meteorological variables

Search Result 400, Processing Time 0.024 seconds

Analysis of Time Series Models for Ozone Concentration at Anyang City of Gyeonggi-Do in Korea (경기도 안양시 오존농도의 시계열모형 연구)

  • Lee, Hoon-Ja
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.5
    • /
    • pp.604-612
    • /
    • 2008
  • The ozone concentration is one of the important environmental issue for measurement of the atmospheric condition of the country. This study focuses on applying the Autoregressive Error (ARE) model for analyzing the ozone data at middle part of the Gyeonggi-Do, Anyang monitoring site in Korea. In the ARE model, eight meteorological variables and four pollution variables are used as the explanatory variables. The eight meteorological variables are daily maximum temperature, wind speed, amount of cloud, global radiation, relative humidity, rainfall, dew point temperature, and water vapor pressure. The four air pollution variables are sulfur dioxide $(SO_2)$, nitrogen dioxide $(NO_2)$, carbon monoxide (CO), and particulate matter 10 (PM10). The result shows that ARE models both overall and monthly data are suited for describing the oBone concentration. In the ARE model for overall ozone data, ozone concentration can be explained about 71% to by the PM10, global radiation and wind speed. Also the four types of ARE models for high level of ozone data (over 80 ppb) have been analyzed. In the best ARE model for high level of ozone data, ozone can be explained about 96% by the PM10, daliy maximum temperature, and cloud amount.

Analysis of Time Series Models for Ozone Concentrations at the Uijeongbu City in Korea

  • Lee, Hoon-Ja
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1153-1164
    • /
    • 2008
  • The ozone data is one of the important environmental data for measurement of the atmospheric condition of the country. In this article, the Autoregressive Error (ARE) model have been considered for analyzing the ozone data at the northern part of the Gyeonggi-Do, Uijeongbu monitoring site in Korea. The result showed that both overall and monthly ARE models are suited for describing the ozone concentration. In the ARE model, seven meteorological variables and four pollution variables are used as the as the explanatory variables for the ozone data set. The seven meteorological variables are daily maximum temperature, wind speed, relative humidity, rainfall, dew point temperature, steam pressure, and amount of cloud. The four air pollution explanatory variables are Sulfur dioxide(SO2), Nitrogen dioxide(NO2), Cobalt(CO), and Promethium 10(PM10). Also, the high level ozone data (over 80ppb) have been analyzed four ARE models, General ARE, HL ARE, PM10 add ARE, Temperature add ARE model. The result shows that the General ARE, HL ARE, and PM10 add ARE models are suited for describing the high level of ozone data.

  • PDF

Analysis of time series models for PM10 concentrations at the Suwon city in Korea (경기도 수원시 미세먼지 농도의 시계열모형 연구)

  • Lee, Hoon-Ja
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.6
    • /
    • pp.1117-1124
    • /
    • 2010
  • The PM10 (Promethium 10) data is one of the important environmental data for measurement of the atmospheric condition of the country. In this article, the Autoregressive Error (ARE) model has been considered for analyzing the monthly PM10 data at the southern part of the Gyeonggi-Do, Suwon monitoring site in Korea. In the ARE model, six meteorological variables and four pollution variables are used as the explanatory variables for the PM10 data set. The six meteorological variables are daily maximum temperature, wind speed, relative humidity, rainfall, radiation, and amount of cloud. The four air pollution explanatory variables are sulfur dioxide ($SO_2$), nitrogen dioxide ($NO_2$), carbon monoxide (CO), and ozone ($O_3$). The result showed that the monthly ARE models explained about 13-49% for describing the PM10 concentration.

Temporal and Spatial correlation of Meteorological Data in Sumjin River and Yongsan River Basins (섬진강 및 영산강 유역 기상자료의 시.공간적 상관성)

  • 김기성
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.6
    • /
    • pp.44-53
    • /
    • 1999
  • The statistical characteristics of the factors related to the daily rainfall prediction model are analyzed . Records of daily precipitation, mean air temperature, relative humidity , dew-point temperature and air pressure from 1973∼1998 at 8 meteorological sttions in south-western part of Korea were used. 1. Serial correlatino of daily precipitaiton was significant with the lag less than 1 day. But , that of other variables were large enough until 10 day lag. 2. Crosscorrelation of air temperature, relative humidity , dew-point temperature showed similar distribution wiht the basin contrours and the others were different. 3. There were significant correlation between the meteorological variables and precipitation preceded more than 2 days. 4. Daily preciption of each station were treated as a truncated continuous random variable and the annual periodic components, mean and standard deviation were estimated for each day. 5. All of the results could be considered to select the input variables of regression model or neural network model for the prediction of daily precipitation and to construct the stochastic model of daily precipitation.

  • PDF

Developing of Forest Fire Occurrence Probability Model by Using the Meteorological Characteristics in Korea (기상특성을 이용한 전국 산불발생확률모형 개발)

  • Lee Si Young;Han Sang Yoel;Won Myoung Soo;An Sang Hyun;Lee Myung Bo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.4
    • /
    • pp.242-249
    • /
    • 2004
  • This study was conducted to develop a forest fire occurrence model using meteorological characteristics for the practical purpose of forecasting forest fire danger. Forest fire in South Korea is highly influenced by humidity, wind speed, and temperature. To effectively forecast forest fire occurrence, we need to develop a forest fire danger rating model using weather factors associated with forest fire. Forest fore occurrence patterns were investigated statistically to develop a forest fire danger rating index using time series weather data sets collected from 8 meteorological observation centers. The data sets were for 5 years from 1997 through 2001. Development of the forest fire occurrence probability model used a logistic regression function with forest fire occurrence data and meteorological variables. An eight-province probability model by was developed. The meteorological variables that emerged as affective to forest fire occurrence are effective humidity, wind speed, and temperature. A forest fire occurrence danger rating index of through 10 was developed as a function of daily weather index (DWI).

Analysis of statistical models on temperature at the Seosan city in Korea (충청남도 서산시 기온의 통계적 모형 연구)

  • Lee, Hoonja
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1293-1300
    • /
    • 2014
  • The temperature data influences on various policies of the country. In this article, the autoregressive error (ARE) model has been considered for analyzing the monthly and seasonal temperature data at the northern part of the Chungcheong Namdo, Seosan monitoring site in Korea. In the ARE model, five meteorological variables, four greenhouse gas variables and five pollution variables are used as the explanatory variables for the temperature data set. The five meteorological variables are wind speed, rainfall, radiation, amount of cloud, and relative humidity. The four greenhouse gas variables are carbon dioxide ($CO_2$), methane ($CH_4$), nitrous oxide ($N_2O$), and chlorofluorocarbon ($CFC_{11}$). And the five air pollution explanatory variables are particulate matter ($PM_{10}$), sulfur dioxide ($SO_2$), nitrogen dioxide ($NO_2$), ozone ($O_3$), and carbon monoxide (CO). The result showed that the monthly ARE model explained about 39-63% for describing the temperature. However, the ARE model will be expected better when we add the more explanatory variables in the model.

The generation of cloud drift winds and inter comparison with radiosonde data

  • Lee, Yong-Seob;Chung, Hyo-Sang;Ahn, Myeung-Hwan;Park, Eun-Jung
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.135-139
    • /
    • 1999
  • Wind velocity is one of the primary variables for describing atmospheric state from GMS-5. And its accurate depiction is essential for operational weather forecasting and for initialization of NWP(Numerical Weather Prediction) models. The aim of this research is to incorporate imagery from other available spectral channels and examine the error characteristics of winds derived from these images. Multi spectral imagery from GMS-5 was used for this purpose and applied to Korean region with together BoM(Bureau of Meteorology). The derivation of wind velocity estimates from low and high resolution visible, split window infrared, and water vapor images, resulted in improvements in the amount and quality of wind data available for forecasting.

  • PDF

Development of 3D Visualization Technology for Meteorological Data (기상자료 3차원 가시화 기술개발 연구)

  • Seo In Bum;Joh Min Su;Yun Ja Young
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.2
    • /
    • pp.58-70
    • /
    • 2003
  • Meteorological data contains observation and numerical weather prediction model output data. The computerized analysis and visualization of meteorological data often requires very high computing capability due to the large size and complex structure of the data. Because the meteorological data is frequently formed in multi-variables, 3-dimensional and time-series form, it is very important to visualize and analyze the data in 3D spatial domain in order to get more understanding about the meteorological phenomena. In this research, we developed interactive 3-dimensional visualization techniques for visualizing meteorological data on a PC environment such as volume rendering, iso-surface rendering or stream line. The visualization techniques developed in this research are expected to be effectively used as basic technologies not only for deeper understanding and more exact prediction about meteorological environments but also for scientific and spatial data visualization research in any field from which three dimensional data comes out such as oceanography, earth science, and aeronautical engineering.

  • PDF

Effect of a Coupled Atmosphere-ocean Data Assimilation on Meteorological Predictions in the West Coastal Region of Korea (대기-해양 결합 자료동화가 서해 연안지역의 기상예측에 미치는 영향 연구)

  • Lee, Sung-Bin;Song, Sang-Keun;Moon, Soo-Hwan
    • Journal of Environmental Science International
    • /
    • v.31 no.7
    • /
    • pp.617-635
    • /
    • 2022
  • The effect of coupled data assimilation (DA) on the meteorological prediction in the west coastal region of Korea was evaluated using a coupled atmosphere-ocean model (e.g., COAWST) in the spring (March 17-26) of 2019. We performed two sets of simulation experiments: (1) with the coupled DA (i.e., COAWST_DA) and (2) without the coupled DA (i.e., COAWST_BASE). Overall, compared with the COAWST_BASE simulation, the COAWST_DA simulation showed good agreement in the spatial and temporal variations of meteorological variables (sea surface temperature, air temperature, wind speed, and relative humidity) with those of the observations. In particular, the effect of the coupled DA on wind speed was greatly improved. This might be primarily due to the prediction improvement of the sea surface temperature resulting from the coupled DA in the study area. In addition, the improvement of meteorological prediction in COAWST_DA simulation was also confirmed by the comparative analysis between SST and other meteorological variables (sea surface wind speed and pressure variation).

Analysis of statistical models on temperature at the Suwon city in Korea (수원시 기온의 통계적 모형 연구)

  • Lee, Hoonja
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1409-1416
    • /
    • 2015
  • The change of temperature influences on the various aspect, especially human health, plant and animal's growth, economics, industry, and culture of the country. In this article, the autoregressive error (ARE) model has been considered for analyzing the monthly temperature data at the Suwon monitoring site in Korea. In the ARE model, five meteorological variables, four greenhouse gas variables and five pollution variables are used as the explanatory variables for the temperature data set. The five meteorological variables are wind speed, rainfall, radiation, amount of cloud, and relative humidity. The four greenhouse gas variables are carbon dioxide ($CO_2$), methane ($CH_4$), nitrous oxide ($N_2O$), and chlorofluorocarbon ($CFC_{11}$). And the five air pollution explanatory variables are particulate matter ($PM_{10}$), sulfur dioxide ($SO_2$), nitrogen dioxide ($NO_2$), ozone ($O_3$), and carbon monoxide (CO). Among five meteorological variables, radiation, amount of cloud, and wind speed are more influence on the temperature. The radiation influences during spring, summer and fall, whereas wind speed influences for the winter time. Also, among four greenhouse gas variables and five pollution variables, chlorofluorocarbon, methane, and ozone are more influence on the temperature. The monthly ARE model explained about 43-69% for describing the temperature.