• Title/Summary/Keyword: meteorological station

Search Result 510, Processing Time 0.032 seconds

Analysis on the PM10 Transportation Route in Gimhae Region Using the HYSPLIT Model (HYSPLIT 모델을 이용한 김해지역의 PM10 수송 경로 분석)

  • Jung, Woo-Sik;Park, Jong-Kil;Lee, Bo-Ram;Kim, Eun-Byul
    • Journal of Environmental Science International
    • /
    • v.22 no.8
    • /
    • pp.1043-1052
    • /
    • 2013
  • This study was conducted to investigate the correlations between the $PM_{10}$ concentration trend and meteorological elements in the Gimhae region and analyze the transportation routes of air pollutants through back-trajectory analysis. Among the air quality measuring stations in the Gimhae regions, the $PM_{10}$ concentration of the Sambangdong station was higher than that of the Dongsangdong station. Also, an examination of the relationships between $PM_{10}$ concentration and meteorological elements showed that the greater the number of yellow dust occurrence days was and the lower the temperature and precipitation were, the higher the $PM_{10}$ concentration appeared. Furthermore, a cluster analysis through the HYSPLIT model showed that there were 4 clusters of trajectories that flowed into the Gimhae region and most of them originated in China. The meteorological characteristics of the four clusters were analyzed and they were similar to those of the air masses that influence South Korea. These analyses found that meteorological conditions affect the $PM_{10}$ concentration.

Cloud Physics Observation System (CPOS) and Validation of Its Products (구름물리 관측시스템 및 산출물 검정)

  • Chang, Ki-Ho;Oh, Sung-Nam;Jeong, Ki-Deok;Yang, Ha-Young;Lee, Myoung-Joo;Jeong, Jin-Yim;Cho, Yohan;Kim, Hyo-Kyung;Park, Gyun-Myeong;Yum, Seong-Soo;Cha, Joo-Wan
    • Atmosphere
    • /
    • v.17 no.1
    • /
    • pp.101-108
    • /
    • 2007
  • To observe and analyze the cloud and fog characteristics, the METeorological Research Institute (METRI) has established the Cloud Physics Observation System (CPOS) by implementing the cloud observation instruments: Forward Scattering Spectrometer Probe (FSSP), PARticle SIze and VELocity (PARSIVEL), Microwave Radiometer (MWR), Micro Rain Radar (MRR), and 3D-AWS at the Daegwallyeong Enhanced Mountain Weather Observation Center. The cloud-related products of CPOS and the validation status for the size distribution of FSSP, the precipitable water of MWR, and the rainfall rate of MRR and PARSIVEL are described.

Inhomogeneities in Korean Climate Data (I): Due to Site Relocation (기상청 기후자료의 균질성 문제 (I) - 관측지점의 이전)

  • Ryoo, Sang-Boom;Kim, Yeon-Hee;Kwon, Tae-Hyeon;Park, Il-Soo
    • Atmosphere
    • /
    • v.16 no.3
    • /
    • pp.215-223
    • /
    • 2006
  • Among observational, local-environmental, and large-scale factors causing significant changes in climate records, the site relocations and the replacement of the instruments are well-known nonclimatic factors for the analysis of climatic trends, climatic variability, and for the detection of anthropogenic climate change such as heat-island effect and global warming. Using dataset that were contaminated by these nonclimatic factors can affect seriously the assessment of climatic trends and variability, and the detection of the climatic change signal. In this paper, the inhomogeneities, which have been caused by relocation of the observation site, in the climate data of Korea Meteorological Administration (KMA) were examined using two-phase regression model. The observations of pan evaporation and wind speed are more sensitive to site relocations than those of other meteorological elements, such as daily mean, maximum and minimum temperatures, with regardless to region.

Analysis of Meteorological and Radiation Characteristics using WISE Observation Data (WISE 관측자료를 이용한 기상 및 복사 특성 분석)

  • Lee, Hankyung;Jee, Joon-Bum;Min, Jae-Sik;Kim, Sangil;Chae, Jung-Hoon
    • Journal of the Korean earth science society
    • /
    • v.39 no.1
    • /
    • pp.89-102
    • /
    • 2018
  • We analyzed the meteorological and radiation characteristics of Seoul metropolitan area using data from energy flux towers that were installed and operated by the Weather Information Service Engine (WISE). The meteorological and radiation variables included temperature, pressure, wind speed, wind direction, relative humidity, surface temperature, rainfall amount, upward and downward solar radiation, upward and downward longwave radiation, albedo and emissivity from 14 energy flux stations located in the Seoul metropolitan area from July 2016 to July 2017. According to the monthly data during the period, the albedo is low and emissivity is high at the Jungnang station in the urban and opposite at Bucheon station in the suburban area. For a station in natural state, the albedo was higher than urban stations because solar radiation reflects effectively. Relatively high temperatures were shown at stations located in urban area with low albedo and high emissivity, in general. However, temperature was high at Gajwa and Ttukseom stations, the albedo was relatively high due to the station environment surrounded by glass wall buildings and the Han river. In the station located in suburban area, both emissivity and temperature were low. Among these stations, Bucheon station had the highest emissivity values because the surface temperature was relatively lower than that of the suburban area. As a result, the albedo decreased and the emissivity increased at stations in urban areas. Additionally, Seoul metropolitan area had less than $100Wm^{-2}$ of net radiation, which implied that radiation energy could be absorbed in the atmosphere.

Long-term Trends of Daily Maximum and Minimum Temperatures for the Major Cities of South Korea and their Implications on Human Health (한국의 주요 대도시에 대한 일 최고 및 최저 기온의 장기변동 경향과 건강에 미치는 영향 전망)

  • Choi, Byoung-Cheol;Kim, Jiyoung;Lee, Dae-Geun;Kysely, Jan
    • Atmosphere
    • /
    • v.17 no.2
    • /
    • pp.171-183
    • /
    • 2007
  • Trends of daily maximum and minimum temperatures in major cities of South Korea (Seoul, Busan, Incheon, Daegu, and Ulsan) during the past 40 years (1961-2000) were investigated. Temperature records for the Chupungryeong station were compared with those of the large cities because of the rural environment of the station. There were distinct warming trends at all stations, although the warming rates depend on each station's local climate and environment. The warming rates in Korea are much greater than the global warming trends, by a factor of 3 to 4. The most increasing rate in daily maximum temperature was at Busan with $0.43^{\circ}C$ per decade, the most increasing rate in daily minimum temperature was at Daegu with $0.44^{\circ}C$ per decade. In general, the warming trends of the cities were most pronounced in winter season with an increasing rate of $0.5^{\circ}C$/decade at least. Diurnal temperature range shows positive or negative trends according to the regional climate and environmental change. The frequency distribution of the daily temperatures for the past 40 years at Seoul and Chupungryeong shows that there have been reductions in cold day frequencies at both stations. The results imply that the impacts on human health might be positive in winter and adverse in summer if the regional warming scenario by the current regional climate model reflects future climate change in Korea.

Internet-based RAMINS II as a Future Communication Framework for AgroMeteorological Information in Asia (아시아 지역 농업기상정보 공유를 위한 인터넷기반 기상정보 연동시스템)

  • Byong-Lyol Lee;G. Ali Kamali;Wang Shili
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.2
    • /
    • pp.127-132
    • /
    • 2002
  • All the countries in RA II (Asia Region in WMO) welcome the establishment of a Web site dedicated to agricultural meteorology, because it is believed that the best way to improve and speed up the flow of information is the use of the Internet and the establishment of a Web site. In providing recommendation for the promotion and improvement of the AgroMeteorological service in RA II, a couple of key suggestions were proposed: (a) Exchanges of data and AgroMeteorological knowledge between member countries and between RAs, (b) Exchanges of experts between member countries as a necessary way to share the knowledge, and (c) Joint research between member countries to solve common problems in AgroMeteorological affairs. In order to meet the above requirements for RA II, an AgroMeteorological information network will be the most critical and dynamic aspect in sustainable agriculture in this region. In addition, the establishment of a Core AgroMeteorological station, recommended by CAgM of WMO, will require its own information sharing systems for communication among member countries. Inevitable use of information technologies (IT) such as information networks, databases, simulation models, GIS, and RS for regional impact assessment of environmental change on AgroEcosystem will be enforced. Thus, the regional Internet-based Agrometeorological information network has been in place since 1999, though all contributions to it have been volunteered by individuals, institutes, universities, etc.

Characteristics of the Real-Time Operation For COMS Normal Operation (천리안위성 정상 운영의 실시간 운영 특성)

  • Cho, Young-Min;Park, Cheol-Min;Kim, Bang-Yeop;Lee, Sang-Cherl
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.2
    • /
    • pp.80-87
    • /
    • 2013
  • Communication Ocean Meteorological Satellite (COMS) has the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service. The COMS is located at $128.2{\circ}$ east longitude on the geostationary orbit and currently under normal operation service since April 2011. In order to perform the three missions, the COMS has 3 separate payloads, the meteorological imager (MI), the Geostationary Ocean Color Imager (GOCI), and the Ka-band communication payload. The satellite controls for the three mission operations and the satellite maintenance are done by the real-time operation which is the activity to communicate directly with the satellite through command and telemetry. In this paper the real-time operation for COMS is discussed in terms of the ground station configuration and the characteristics of daily, weekly, monthly, seasonal, and yearly operation activities. The successful real-time operation is also confirmed with the one year operation results for 2011 which includes both the latter part of the In-Orbit-Test (IOT) and the first year normal operation of the COMS.

Effects of Network Density on Gridded Horizontal Distribution of Meteorological Variables in the Seoul Metropolitan Area (관측망 밀도가 기상 자료의 격자형 수평 분포에 미치는 영향)

  • Kang, Minsoo;Park, Moon-Soo;Chae, Jung-Hoon;Min, Jae-Sik;Chung, Boo Yeon;Han, Seong Eui
    • Atmosphere
    • /
    • v.29 no.2
    • /
    • pp.183-196
    • /
    • 2019
  • High-quality and high-resolution meteorological information is essential to reduce damages due to disastrous weather phenomena such as flash flood, strong wind, and heat/cold waves. There are many meteorological observation stations operated by Korea Meteorological Administration (KMA) in Seoul Metropolitan Area (SMA). Nonetheless, they are still not enough to represent small-scale weather phenomena like convective storm cells due to its poor resolution, especially over urban areas with high-rise buildings and complex land use. In this study, feasibilities to use additional pre-existing networks (e.g., operated by local government and private company) are tested by investigating the effects of network density on the gridded horizontal distribution of two meteorological variables (temperature and precipitation). Two heat wave event days and two precipitation events are chosen, respectively. And the automatic weather station (AWS) networks operated by KMA, local-government, and SKTechX in Incheon area are used. It is found that as network density increases, correlation coefficients between the interpolated values with a horizontal resolution of 350 m and observed data also become large. The range of correlation coefficients with respect to the network density shows large in nighttime rather than in daytime for temperature. While, the range does not depend on the time of day, but on the precipitation type and horizontal distribution of convection cells. This study suggests that temperature and precipitation sensors should be added at points with large horizontal inhomogeneity of land use or topography to represent the horizontal features with a resolution higher than 350 m.

Study on the guidance of the gust factor (돌풍계수 가이던스에 관한 연구)

  • Park, Hyo-Soon
    • Atmosphere
    • /
    • v.14 no.3
    • /
    • pp.19-28
    • /
    • 2004
  • In this study, two years Automatic Weather Station (AWS) data observed near the coast and islands are used to evaluate gust factors only when time averaged wind speed is higher than 5 ms. The gust factors are quite different in spatial and temporal domain according to analysis method. As the averaged time is increased, the gust factors are also increased. But the gust factors are decreased when wind speed is increased. It is because each wind speed is averaged one and a maximum wind is the greatest one for each time interval. The result from t-test is shown that all data are included within the 99% significance level. A sample standard deviation of ten minutes and one minute are 0.137~0.197, 0.067~0.142, respectively. Recently, the gust factor provided at the Korea Meteorological Administration (KMA) Homepage is calculated with one-hour averaged method. All though this method is hard to use directly for forecasting the strong wind over sea and coast, the result will be a great help to express Ocean Storm Flash in the Regional Meteorological Offices and the Meteorological Stations.