• Title/Summary/Keyword: meteorological observation

Search Result 861, Processing Time 0.025 seconds

Analysis of Construction Conditions Change due to Climate Change (기후변화에 의한 건설시공환경 변화 분석)

  • Bae, Deg Hyo;Lee, Byong Ju;Jung, Il Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4D
    • /
    • pp.513-521
    • /
    • 2008
  • The objective of this study is the evaluation of the impact on the construction condition due to historical observation data and IPCC SRES A2 climate change scenario. For this purpose, daily precipitation and daily mean temperature data which have been observed over the past 30 years by Korea Meteorological Administration are collected and applied. Also, A2 scenarios during 2011~2040 and 2051~2080 are used for this analysis. According to the results of trend analyses on annual precipitation and annual mean temperature, they are on the increase mostly. The available working day and the day occurred an extreme event are used as correlation indices between climate factor and construction condition. For the past observation data, linear regression and Mann-Kendall test are used to analyze the trend on the correlation index. As a result, both working day and extreme event occurrence day are increased. Likewise, for the future, variation analysis showed the similar result to that of the past and the occurrence frequency of extreme events is increased obviously. Therefore, we can project to increase flood damage potential on the construction site by climate change.

National Disaster Management, Investigation, and Analysis Using RS/GIS Data Fusion (RS/GIS 자료융합을 통한 국가 재난관리 및 조사·분석)

  • Seongsam Kim;Jaewook Suk;Dalgeun Lee;Junwoo Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.743-754
    • /
    • 2023
  • The global occurrence of myriad natural disasters and incidents, catalyzed by climate change and extreme meteorological conditions, has engendered substantial human and material losses. International organizations such as the International Charter have established an enduring collaborative framework for real-time coordination to provide high-resolution satellite imagery and geospatial information. These resources are instrumental in the management of large-scale disaster scenarios and the expeditious execution of recovery operations. At the national level, the operational deployment of advanced National Earth Observation Satellites, controlled by National Geographic Information Institute, has not only catalyzed the advancement of geospatial data but has also contributed to the provisioning of damage analysis data for significant domestic and international disaster events. This special edition of the National Disaster Management Research Institute delineates the contemporary landscape of major disaster incidents in the year 2023 and elucidates the strategic blueprint of the government's national disaster safety system reform. Additionally, it encapsulates the most recent research accomplishments in the domains of artificial satellite systems, information and communication technology, and spatial information utilization, which are paramount in the institution's disaster situation management and analysis efforts. Furthermore, the publication encompasses the most recent research findings relevant to data collection, processing, and analysis pertaining to disaster cause and damage extent. These findings are especially pertinent to the institute's on-site investigation initiatives and are informed by cutting-edge technologies, including drone-based mapping and LiDAR observation, as evidenced by a case study involving the 2023 landslide damage resulting from concentrated heavy rainfall.

Numerical Study on the Role of Sea-ice Using Ocean General Circulation Model (해양대순환모형을 이용한 해빙의 역할에 관한 수치실험 연구)

  • Lee, Jin-Ah;Ahn, Joong-Bae
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.4
    • /
    • pp.225-233
    • /
    • 2001
  • In order to find out the role of sea-ice in the climate system, a thermodynamic sea-ice model has been developed and included in the ocean general circulation model, MOM2, for the construction of OGCM/sea-ice coupled model in this study. By using the model developed, seasonal mean sea-ice distribution has been simulated, first of all. The role of sea-ice in the sense of large scale ocean circulation has been studied by comparing the results of OGCM/sea-ice coupled model experiment with OGCM-standalone experiment. At the same time, the coupled model has been verified by comparing and analysing the results of the other models and observation. The coupled model has reasonably simulated the overall seasonal distribution of sea-ice in the high latitudes of both hemispheres. In the comparative analysis between the OGCM/sea-ice coupled and OGCM-standalone experiments, the sea-ice is playing important roles on maintaining not only the distributions of temperature and salinity in high latitudes of both hemispheres, but also the meridional ocean circulation associated with south ocean cell, southern hemisphere cell and zonal ocean circulation such as a circum-polar current.

  • PDF

Assessment of Drought Risk in Korea: Focused on Data-based Drought Risk Map (우리나라 가뭄 위험도 평가: 자료기반 가뭄 위험도 지도 작성을 중심으로)

  • Park, Jong Yong;Yoo, Ji Young;Lee, Minwoo;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4B
    • /
    • pp.203-211
    • /
    • 2012
  • Once drought occurs, it results in the extensive affected area and considerable socio-economic damages. Thus, it is necessary to assess drought risk and to prepare its counterplans. In this study, using various observation data on meteorological and socio-economical factors, drought risk was evaluated in South Korea. To quantify drought risk, Drought Hazard Index (DHI) was calculated based on the occurrence probability of drought, and Drought Vulnerability Index (DVI) was computed to reflect socio-economic consequences of drought. Drought Risk Index (DRI) was finally suggested by combining DHI and DVI. These indices were used to assess drought risk for different administrative districts of South Korea. The overall results show that the highest drought risk area was Jeolla Province where agricultural practice is concentrated. The drought risk map proposed in this study reflects regional characteristics, thus it could be utilized as a basic data for the establishment of drought preventive measures.

Observation of the Sea Surface Skin Current Using a GPS-Drifter (GPS 뜰개를 이용한 해양 표면류 관측)

  • Park, Joon Seong;Kang, KiRyong;Lee, Seok;Lee, Sang-Ryong
    • Ocean and Polar Research
    • /
    • v.35 no.3
    • /
    • pp.193-203
    • /
    • 2013
  • A GPS-drifter was newly designed to observe the sea surface skin current and to estimate the direct wind effect on the sea surface. After conducting a test to establish and verify the accuracy of the GPS itself in the laboratory, in-situ experimental campaigns at Saemangeum in Gunsan city and Haeundae in Busan city, Korea, were carried out to ascertain the drifter track and to estimate the velocity data set on Oct. 3, 15, 23, 27 and Nov. 25, 2011. The current meters, RCM9 and ADCP, were moored together to remove the background current field, and the wind data were obtained from several marine stations such as towers and buoys in these areas. The drifter-observed velocity show good agreement with the flow obtained by the HF radar in the Saemangeum area. The direction of the wind-driven current extracted from the drifter-observed velocity was completely deflected to the right, however the degree of the angle was different according to the drift types. The average speed of the wind-driven current matched with 2.19~2.81% of the wind speed and the deflection angle was about $8.0{\sim}10.9^{\circ}$ without adjustment for the land-sea effect, and about 2.19~2.84% and $4.1{\sim}6.0^{\circ}$ with the adjustment for the land-sea effect.

Changes in Air Temperature and Its Relation to Ambulance Transports Due to Heat Stroke in All 47 Prefectures of Japan

  • Murakami, Shoko;Miyatake, Nobuyuki;Sakano, Noriko
    • Journal of Preventive Medicine and Public Health
    • /
    • v.45 no.5
    • /
    • pp.309-315
    • /
    • 2012
  • Objectives: Changes in air temperature and its relation to ambulance transports due to heat stroke in all 47 prefectures, in Japan were evaluated. Methods: Data on air temperature were obtained from the Japanese Meteorological Agency. Data on ambulance transports due to heat stroke was directly obtained from the Fire and Disaster Management Agency, Japan. We also used the number of deaths due to heat stroke from the Ministry of Health, Labour and Welfare, Japan, and population data from the Ministry of Internal Affairs and Communications. Chronological changes in parameters of air temperature were analyzed. In addition, the relation between air temperature and ambulance transports due to heat stroke in August 2010 was also evaluated by using an ecological study. Results: Positive and significant changes in the parameters of air temperature that is, the mean air temperature, mean of the highest air temperature, and mean of the lowest air temperature were noted in all 47 prefectures. In addition, changes in air temperature were accelerated when adjusted for observation years. Ambulance transports due to heat stroke was significantly correlated with air temperature in the ecological study. The highest air temperature was significantly linked to ambulance transports due to heat stroke, especially in elderly subjects. Conclusions: Global warming was demonstrated in all 47 prefectures in Japan. In addition, the higher air temperature was closely associated with higher ambulance transports due to heat stroke in Japan.

A Study on Development of an Earthquake Ground-motion Database Based on the Korean National Seismic Network (국가지진관측망 기반 지진동 데이터베이스 개발 연구)

  • Choi, Sae-Woon;Rhie, Junkee;Lee, Sang-Hyun;Kang, Tae-Seob
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.277-283
    • /
    • 2020
  • In order to improve the ground-motion prediction equation, which is an important factor in seismic hazard assessment, it is essential to obtain good quality seismic data for a region. The Korean Peninsula has an environment in which it is difficult to obtain strong ground motion data. However, because digital seismic observation networks have become denser since the mid-2000s and moderate earthquake events such as the Odaesan earthquake (Jan. 20, 2007, ML 4.8), the 9.12 Gyeongju earthquake (Sep. 12, 2016, ML 5.8), and the Pohang earthquake (Nov. 15, 2017, ML 5.4) have occurred, some good empirical data on ground motion could have been accumulated. In this study, we tried to build a ground motion database that can be used for the development of the ground motion attenuation equation by collecting seismic data accumulated since the 2000s. The database was constructed in the form of a flat file with RotD50 peak ground acceleration, 5% damped pseudo-spectral acceleration, and meta information related to hypocenter, path, site, and data processing. The seismic data used were the velocity and accelerogram data for events over ML 3.0 observed between 2003 and 2019 by the Korean National Seismic Network administered by the Korea Meteorological Administration. The final flat file contains 10,795 ground motion data items for 141 events. Although this study focuses mainly on organizing earthquake ground-motion waveforms and their data processing, it is thought that the study will contribute to reducing uncertainty in evaluating seismic hazard in the Korean Peninsula if detailed information about epicenters and stations is supplemented in the future.

A Sensitivity Study of WRF Model Simulations to Nudging Methods for A Yeongdong Heavy Snowfall Event (영동 대설 사례를 대상으로 한 WRF Simulation의 Nudging 방법에 따른 민감도 연구)

  • Choi, Ji Won;Lee, Jae Gyoo
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.99-115
    • /
    • 2015
  • To investigate the influences of the observational nudging and the analysis nudging on the WRF simulation for the heavy snowfall event in Yeongdong area on 26 February 2012, the sensitivity experiments in relation to nudging effects were conducted. We initially set the magnitude of nudging coefficient of $6.0{\times}10^{-4}s^{-1}$ to apply to the analysis nudging experiments and observational experiments. To select the optimized options for the observational nudging, the radius influence experiment was carried out with radii ranging from 10 to 25 km at 5 km intervals. Among the observational nudging experiments, the experiment, which was conducted with the option of the radius influence of 15 km and that of the nudging coefficient of $6.0{\times}10^{-4}s^{-1}$ (ONG exp.), showed a best result. As giving the nudging effect only directly on D1 and D2 brought about a better result for the analysis nudging, we set the analysis nudging experiment as above (ANG exp.). We compared and analyzed the results from the control experiment, ONG experiment, and ANG experiment to reveal nudging effects. It was found that the control experiment brought about a result that it overestimated its precipitation in comparison with the observation and failed to properly simulate the time zone of rainfall concentration. When either of the two nudging (observational and analysis nudging) was applied to the data assimilation, it brought about a better result than the control experiment. Especially the observational nudging led to a meaningful result for the wind field, while the analysis nudging had the best result for the precipitation distribution among the experiments.

Optical Monitoring Strategy for Avoiding Collisions of GEO Satellites with Close Approaching IGSO Objects

  • Choi, Jin;Jo, Jung Hyun;Yim, Hong-Suh;Choi, Young-Jun;Park, Maru;Park, Sun-Youp;Bae, Young-Ho;Roh, Dong-Goo;Cho, Sungki;Park, Young-Sik;Jang, Hyun-Jung;Kim, Ji-Hye;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.411-417
    • /
    • 2015
  • Several optical monitoring strategies by a ground-based telescope to protect a Geostationary Earth Orbit (GEO) satellite from collisions with close approaching objects were investigated. Geostationary Transfer Orbit (GTO) objects, Inclined GeoSynchronous Orbit (IGSO) objects, and drifted GEO objects forced by natural perturbations are hazardous to operational GEO satellites regarding issues related to close approaches. The status of these objects was analyzed on the basis of their orbital characteristics in Two-Line Element (TLE) data from the Joint Space Operation Center (JSpOC). We confirmed the conjunction probability with all catalogued objects for the domestic operational GEO satellite, Communication, Ocean and Meteorological Satellite (COMS) using the Conjunction Analysis Tools by Analytical Graphics, Inc (AGI). The longitudinal drift rates of GeoSynchronous Orbit (GSO) objects were calculated, with an analytic method and they were confirmed using the Systems Tool Kit by AGI. The required monitoring area was determined from the expected drift duration and inclination of the simulated target. The optical monitoring strategy for the target area was analyzed through the orbit determination accuracy. For this purpose, the close approach of Russian satellite Raduga 1-7 to Korean COMS in 2011 was selected.

Comparison of Two Semi-Empirical BRDF algorithms using SPOT/VGT

  • Lee, Chang Suk;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.3
    • /
    • pp.307-314
    • /
    • 2013
  • The Bidirectional Reflectance Distribution (BRD) effect is critical to interpret the surface information using remotely sensed data. This effect was caused by geometric relationship between sensor, target and solar that is inevitable effect for data of optical sensor. To remove the BRD effect, semi-empirical BRDF models are widely used. It is faster to calculate than physical models and demanded less observation than empirical models. In this study, Ross-Li kernel and Roujean kernel were used respectively in National Aeronautics and Space Administration (NASA) and European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) that are used to compare each other. The semi-empirical model consists of three parts which are isotropic, geometric and volumetric scattering. Each part contained physical kernel and empirical coefficients that were calculated by statistical method. Red and NIR channel of SPOT/VEGETATION product were used to compute Nadir BRDF Adjusted Reflectance (NBAR) over East Asia area from January 2009 to December 2009. S1 product was provided by VITO that was conducted atmospheric correction using Simplified Method of Atmospheric Correction (SMAC). NBAR was calculated using corrected reflectance of red and NIR. Previous study has revealed that Roujean geometric kernel had unphysical values in large zenith angles. We extracted empirical coefficients in three parts and normalized reflectance to compare both BRDF models. Two points located forest in Korea peninsular and bare land in Gobi desert were selected for comparison. As results of time series analysis, both models showed similar reflectance change pattern and reasonable values. Whereas in case of empirical coefficients comparison, different changes pattern of values were showed in isotropic coefficients.