We investigated the accuracy of surface air temperature prediction according to the selection of land-use data and initial meteorological data using the Weather Research and Forecasting model-v4.2.1. A numerical experiment was conducted at the Daegu Dyeing Industrial Complex. We initially used meteorological input data from GFS (Global forecast system)and GDAPS (Global data assimilation and prediction system). High-resolution input data were generated and used as input data for the weather model using the land cover data of the Ministry of Environment and the digital elevation model of the Ministry of Land, Infrastructure, and Transport. The experiment was conducted by classifying the terrestrial and topographic data (land cover data) and meteorological data applied to the model. For simulations using high-resolution terrestrial data(10 m), global data assimilation, and prediction system data(CASE 3), the calculated surface temperature was much closer to the automatic weather station observations than for simulations using low-resolution terrestrial data(900 m) and GFS(CASE 1).
Solar energy is attenuated by absorbing gases (ozone, aerosol, water vapour and mixed gas) and cloud in the atmosphere. And these are measured with solar instruments (pyranometer, phyheliometer). However, solar energy is insufficient to represent detailed energy distribution, because the distributions of instruments are limited on spatial. If input data of solar radiation model is accurate, the solar energy reaches at the surface can be calculated accurately. Recently a variety of satellite measurements are available to TERA/AQUA (MODIS), AURA (OMI) and geostationary satellites (GMS-5, GOES-9, MTSAT-1R, MTSAT-2 and COMS). Input data of solar radiation model can be used aerosols and surface albedo of MODIS, total ozone amount of OMI and cloud fraction of meteorological geostationary satellite. The solar energy reaches to the surface is calculated hourly by solar radiation model and those are accumulated monthly and annual. And these results are verified the spatial distribution and validated with ground observations.
Urban environmental problem became one of major issues during its urbanization processes. Environmental impacts are assessed during recent urban planning and development. Though the environmental impact assessment considers meteorological impact as a minor component, changes in wind environment during development can largely affect the distribution pattern of air temperature, humidity, and pollutants. Impact assessment of local wind is, therefore, a major element for impact assessment prior to any other meteorological impact assessment. Computational Fluid Dynamics (CFD) models are utilized in various fields such as in wind field assessment during a construction of a new building and in post analysis of a fire event over a mountain. CFD models require specially formatted input data and produce specific output files, which can be analyzed using special programs. CFD's huge requirement in computing power is another hurdle in practical use. In this study, a CFD model and related software processors were automated and integrated as a microscale wind environmental impact assessment system. A supercomputer system was used to reduce the running hours of the model. Input data processor ingests development plans in CAD or GIS formatted files and produces input data files for the CFD model. Output data processor produces various analytical graphs upon user requests. The system was used in assessing the impacts of a new building near an observatory on wind fields and showed the changes by the construction visually and quantitatively. The microscale wind assessment system will evolve, of course, incorporating new improvement of the models and processors. Nevertheless the framework suggested here can be utilized as a basic system for the assessment.
This study aims to figure out typical meteorological data according to Korean time in order to evaluate building energy performance. Various methods of calculating typical meteorological data were compared and examined to improve accuracy and reliability of this study. This study analyzed and examined such methodologies as typical meteorological data for HASP/ACLD-8001, UK CIBSE TRY developed by CIBSE and prEN ISO 15927-4, (=ISO TRY) an international standard to evaluate annual energy demand of cooling and heating devices. In addition, actual data of KMA corresponding to Seoul in $1985{\sim}2005$ were statistically analyzed according to calculation methodology. The calculated typical meteorological data were compared te actual data using MBE, RMSE and t-Statistic. As a result, According to the comparison between average annual for HASP/ACLD-8001 and ISO TRY standard year, the average annual for HASP/ACLD-8001 is closer to actual measurement, showing that the use of typical meteorological data for HASP/ACLD-8001 is preferred. However, since the input format requested by current simulation is the same international standard as TRY. Therefore, it is necessary to improve accuracy of TRY calculation methodology and accordingly figure out Korean typical meteorological data based on average year.
In this paper, precipitation / non-precipitation pattern classification of meteorological radar data is conducted by using neuro-fuzzy algorithm. Structure expression of meteorological radar data information is analyzed in order to effectively classify precipitation and non-precipitation. Also diverse input variables for designing pattern classifier could be considered by exploiting the quantitative as well as qualitative characteristic of meteorological radar data information and then each characteristic of input variables is analyzed. Preferred pattern classifier can be designed by essential input variables that give a decisive effect on output performance as well as model architecture. As the proposed model architecture, neuro-fuzzy algorithm is designed by using FCM-based radial basis function neural network(RBFNN). Two parts of classifiers such as instance classifier part and echo classifier part are designed and carried out serially in the entire system architecture. In the instance classifier part, the pattern classifier identifies between precipitation and non-precipitation data. In the echo classifier part, because precipitation data information identified by the instance classifier could partially involve non-precipitation data information, echo classifier is considered to classify between them. The performance of the proposed classifier is evaluated and analyzed when compared with existing QC method.
In order to reduce the amount of damage from natural disasters, we needs prevention meteorological database classified into the cause of disaster, damage elements etc. For this, we have analyzed four data, such as Statistical yearbook of calamities issued by the National Emergency Management Agency and Annual Climatological Report issued by the Korea Meteorological Administration and Recently 10 years for natural disaster damage and Statistics Yearbook from the Ministry of Government Administration and Human affairs. Through the analysis of disaster data, we have selected input variables, such as causes and elements, occurrence frequencies, vulnerable areas of natural disaster, etc. In order to reduce damage from natural disaster, the prevention activities and forecasting based on meteorological parameters and damage datas are required. In addition, it is necessary to process meteorological information for disaster prevention activities. Through these procedure, we have established the foundation of database about natural disasters. This database will be used to assess the natural disasters and build risk model and natural disasters mitigation plan.
Air quality models have been widely used to study and simulate many air quality issues. In the simulation, it is important to raise the accuracy of meteorological predicted data because the results of air quality modeling is deeply connected with meteorological fields. Therefore in this study, we analyzed the effects of meteorological fields on the air quality simulation. This study was designed to evaluate MM5 predictions by using different initial condition data and different observations utilized in the data assimilation. Among meteorological scenarios according to these input data, the results of meteorological simulation using National Centers for Environmental Prediction (Final) Operational Global Analysis data were in closer agreement with the observations and resulted in better prediction on ozone concentration. And in Seoul, observations from Regional Meteorological Office for data assimilations of MM5 were suitable to predict ozone concentration. In other areas, data assimilation using both observations from Regional Meteorological Office and Automatical Weather System provided valid method to simulate the trends of meteorological fields and ozone concentrations. However, it is necessary to vertify the accuracy of AWS data in advance because slightly overestimated wind speed used in the data assimilation with AWS data could result in underestimation of high ozone concentrations.
The Metropolitan Tracer Experiment (METREX) was performed over the Washington, D.C. area using two inert, non-deposition perfluorocarbon gases for over 1 year period (November 1983∼December 1984). Two perfluorocarbon gas tracers (PDCH, PMCH) were released simultaneously at intervals of every 36 hours for 6 hours, regardless of the meteorological conditions in metropolitan area. Samples were collected continuously for 8 hours at a central downtown and two adjacent suburban locations. Monthly air samples were collected at 93 sites across the whole region (at urban, suburban, and rural locations). The purpose of this study is to simulate INPUFF and ISCST model using METREX data, and to compare calculated and observed concentrations. In the case of INPUFF simulation, two meteorological input data were used. One is result data from wind field model which was calculated by diagnostic wind model (DWM), the other is meteorological data observed at single station. Here, three kinds of model calculation were performed during April and July 1984; they include (1) INPUFF model using DWM data (2) INPUFF model using single meteorological data (3) ISCST model. The monthly average concentration data were used for statistic analysis and to draw their horizontal distribution patterns. Eight-hour-averaged concentration was used to describe movement of puff during the episode period. The results showed that the concentrations calculated by puff model (INPUFF) were better than plume model (ISCST). In the case of puff model (INPUFF), a model run using wind field data produced better results than that derived by single meteorological data.
The solar and meteorological resources map is calculated using by one-layer solar radiation model (GWNU model), satellites data and numerical model output on the Korean peninsula. The Meteorological input data to perform the GWNU model are retrieved aerosol optical thickness from MODIS (TERA/AQUA), total ozone amount from OMI (AURA), cloud fraction from geostationary satellites (MTSAT-1R) and temperature, pressure and total precipitable water from output of RDAPS (Regional Data Assimilation and Prediction System) and KLAPS (Korea Local Analysis and Prediction System) model operated by KMA (Korea Meteorological Administration). The model is carried out every hour using by the meteorological data (total ozone amount, aerosol optical thickness, temperature, pressure and cloud amount) and the basic data (surface albedo and DEM). And the result is analyzed the distribution in time and space and validated with 22 meteorological solar observations. The solar resources map is used to the solar energy-related industries and assessment of the potential resources for solar plant. The National Institute of Meteorological Research in KMA released $4km{\times}4km$ solar map in 2008 and updated solar map with $1km{\times}1km$ resolution and topological effect in 2010. The meteorological resources map homepage (http://www.greenmap.go.kr) is provided the various information and result for the meteorological-solar resources map.
세계 각지에서 집중호우, 태풍 등으로 인한 홍수 피해가 많이 발생하고 있으며, 이러한 피해를 줄이기 위해 홍수를 미리 예측하는 것은 수해 피해 관리 차원에서 필수적인 요소이다. 본 논문에서는 홍수예측을 위한 핵심 파라미터인 수위, 강수량, 그리고 습도 데이터를 입력 데이터로 활용한 수위 예측 모델을 제안한다. 많은 연구 분야에서 이미 시계열 데이터 예측 성능이 검증된 LSTM 및 GRU 모델을 기반으로 기상청에서 제공하는 종관기상관측 자료와, 방재기상관측 자료를 활용하여 입력 데이터셋을 다르게 구축하고, 성능 비교 실험을 진행하였다. 결과적으로 종관기상관측 자료를 사용했을 때 가장 좋은 결과를 얻었다. 본 논문을 통해 입력 데이터에 따른 성능 비교 실험을 진행하였고, 향후 연구로 홍수 위험도 판별 모델과 연계하여 사전에 대피 결정이 가능한 시스템 개발의 초기 연구로서 활용될 수 있을 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.