• Title/Summary/Keyword: meteorological factor

Search Result 378, Processing Time 0.036 seconds

Influence of Land Use and Meteorological Factors for Evapotranspiration Estimation in the Coastal Urban Area (해안도시 지역에서 증발산량 산정에 토지이용도와 기상인자의 영향성)

  • Yang, Sung-Il;Kang, Dong-Hwan;Kwon, Byung-Hyuk;Kim, Byung-Woo
    • Journal of Environmental Science International
    • /
    • v.19 no.3
    • /
    • pp.295-304
    • /
    • 2010
  • Actual evapotranspiration (AET) in the Suyeong-gu was estimated and correlations between AET and meteorological factors were analyzed. The study area was Suyeong-gu lay at the east longitude $129^{\circ}$ 05' 40" ~ 129$^{\circ}$ 08' 08" and north latitude $35^{\circ}$ 07' 59" ~ $35^{\circ}$ 11' 01". The Kumryun mountain, the Bae mountain, the Suyeong river and the Suyeong bay are located on west, north, northeaster and south side in the study area, respectively. AET was estimated using precipitation (P), potential evapotranspiration (PET) and plant-available water coefficient. Meteorological factors to estimate PET were air temperature, dewpoint temperature, atmospheric pressure, duration of sunshine and mean wind speed (MWS). PET and AET were estimated by a method of Allen et al. (1998) and Zhang et al. (2001), respectively. PET was the highest value (564.45 mm/yr) in 2002 year, while it was the lowest value (449.95 mm/yr) in 2003 year. AET was estimated highest value (554.14 mm/yr) in 2002 year and lowest value (427.91 mm/yr) in 2003 year. Variations of PET and AET were similar. The linear regression function of AET as PET using monthly data was AET=0.87$\times$PET+3.52 and coefficient of determination was high, 0.75. In order to analyze relationship between the evapotranspiration and meteorological factors, correlation analysis using monthly data were accomplished. Correlation coefficient of AET-PET was 0.96 high, but they of AET-P and PET-P were very low. Correlation coefficients of AET-MWS and PET-MWS were 0.67 and 0.73, respectively. Thus, correlation between evapotranspiration and MWS was the highest among meteorological factors in Suyong-gu. This means that meteorological factor to powerfully effect for the variation of evapotranspiration was MWS. The linear regression function of AET as MWS was AET=84.73$\times$MWS+223.05 and coefficient of determination was 0.54. The linear regression function of PET as MWS was PET=83.83$\times$MWS+203.62 and coefficient of determination was 0.45.

Seasonal changes in pan evaporation observed in South Korea and their relationships with reference evapotranspiration

  • Woo, Yin San;Paik, Kyungrock
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.183-183
    • /
    • 2017
  • Pan evaporation (Epan) is an important indicator of water and energy balance. Despite global warming, decreasing annual Epan has been reported across different continents over last decades, which is claimed as pan evaporation paradox. However, such trend is not necessarily found in seasonal data because the level of contributions on Epan vary among meteorological components. This study investigates long-term trend in seasonal pan evaporation from 1908 to 2016 across South Korea. Meteorological variables including air temperature (Tair), wind speed (U), vapor pressure deficit (VPD), and solar radiation (Rs) are selected to quantify the effects of individual contributing factor to Epan. We found overall decreasing trend in Epan, which agrees with earlier studies. However, mixed tendencies between seasons due to variation of dominant factor contributing Epan were found. We also evaluated the reference evapotranspiration based on Penman-Monteith method and compared this with Epan to better understand the physics behind the evaporation paradox.

  • PDF

A Study on Annual Atmospheric Dispersion Factors Between Continuous and Purge Releases of Gaseous Radioactive Effluents

  • Kim, Na-Hyun;Hwang, Won-Tae;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.177-186
    • /
    • 2021
  • Radioactive materials from nuclear power facilities can be released into the atmosphere through various channels. Recently, the dispersion of radioactive materials has become critical issue in Korea after Kori Unit 1 and Wolsong Unit 1 were permanently shut down. In this study, annual atmospheric dispersion factors were compared based on the continuous release and purge release using the XOQDOQ computer program, a method for calculating atmospheric dispersion factors at commercial nuclear power stations. The meteorological data analyzed in this study was based on the Shin Kori nuclear power meteorological tower which has the largest operating nuclear power plants in Korea, for three years (from 2008 to 2010). The analysis results of the dispersion factor of the radioactive material release obtained using the XOQDOQ program showed that the difference between the continuous release and purge release was within two times. This study will be valuable helpful for revealing the uncertainty of the predictive atmospheric dispersion factor to achieve regulation.

Sensitivity Study of the Initial Meteorological Fields on the PM10 Concentration Predictions Using CMAQ Modeling (CMAQ 모델링을 통한 초기 기상장에 대한 미세먼지 농도 예측 민감도 연구)

  • Jo, Yu-Jin;Lee, Hyo-Jung;Chang, Lim-Seok;Kim, Cheol-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.6
    • /
    • pp.554-569
    • /
    • 2017
  • Sensitivity analysis on $PM_{10}$ forecasting simulations was carried out by using two different initial and boundary conditions of meteorological fields: NCEP/FNL (National Centers for Environmental Prediction/Final Analysis) reanlaysis data and NCEP/GFS (National Centers for Environmental Prediction/Global Forecast System) forecasting data, and the comparisons were made between two different simulations. The two results both yielded lower $PM_{10}$ concentrations than observations, with relatively lower biased results by NCEP/FNL than NCEP/GFS. We explored the detailed individual meteorological variables to associate with $PM_{10}$ prediction performance. With the results of NCEP/FNL outperforming GFS, our conclusion is that no particular significant bias was found in temperature fields between NCEP/FNL and NCEP/GFS data, while the overestimated wind speed by NCEP/GFS data influenced on the lower $PM_{10}$ concentrations simulation than NCEP/FNL, by decreasing the duration time of high-$PM_{10}$ loaded air mass over both coastal and metropolitan areas. These comparative characteristics of FNL against GFS data such as maximum 3~4 m/s weaker wind speed, $PM_{10}$ concentration control with the highest possible factor of 1.3~1.6, and one or two hour difference of peak time for each case in this study, were also reflected into the results of statistical analysis. It is implying that improving the surface wind speed fluctuation is an important controlling factor for the better prediction of $PM_{10}$ over Korean Peninsula.

Site Calibration for the Wind Turbine Performance Evaluation (풍력발전기 성능실증을 위한 단지교정 방법)

  • Nam, Yoon-Su;Yoo, Neung-Soo;Lee, Jung-Wan
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.49-57
    • /
    • 2002
  • The accurate wind speed information at the hub height of a wind turbine is very essential to the exact estimation of the wind turbine power performance testing. Several methods on the site calibration, which is a technique to estimate the wind speed at the wind turbine's hub height based on the measured wind data using a reference meteorological mast, are introduced. A site calibration result and the wind resource assessment for the Taekwanryung test site are presented using a one-month wind data from a reference meteorological mast and a temporal mast installed at the site of wind turbine. From this analysis, it turns out that the current location of the reference meteorological mast is wrongly determined, and the self-developed codes for the site calibration are working properly. Besides, an analysis on the uncertainty allocation for the wind speed correction using site calibration is performed.

  • PDF

Seasonal Variations of $SO_2$Dry Deposition Velocity Obtained by Sonic Anemometer-Thermometer (초음파 풍속온도계를 이용한 $SO_2$건성침착속도의 계절변화 특징)

  • 이종범;박세영
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.5
    • /
    • pp.465-478
    • /
    • 1998
  • In this study, seasonal variations of the dry deposition velocity and deposition flux for the sulfur dioxide were analysed. The field observation was performed during one year (from November 1, 1995 to October 31, 1996) in Chunchon basin. The turbulence data were measured by 3-dimensional sonic anemometer/thermometer, and were estimated by mean meteorological data obtained at two heights (2.5 m and 10 m) of meteorological tower. Also, the estimation methods were evaluated by comparing the turbulence data. The results showed that the estimated dry deposition velocity and turbulence parameter such as uc and sensible heat flux using mean meteorological data were relatively similar to the sonic measurements, but all showed somewhat large differences. The dry deposition velocity was large in summer and small in winter mainly due to canopy resistance (rc). The major factor which affects diurnal variation of the velocity was aerodynamic resistance (rw). The SO2 dry deposition flux was large in winter and small in summer in Chunchon.

  • PDF

A Method to Destripe Imaging Spectroradiometer Data of SZ-3

  • Xiaoxiang, Zhu;Tianxi, Fan;Qian, Huang
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1278-1280
    • /
    • 2003
  • Striping is a main factor for imaging spectroradiometer data, which is obtained by multi-sensor scanning on spacecraft. The reason causing stripes and the development of striping removal methods are simply described in this paper, particularly, the principle of Matching Empirical Distribution Functions is introduced in detail. By using this method, some experiments are done to destripe imaging spectrometer data of SZ-3. The result shows that the method of Matching Empirical Distribution Functions is available for destirping Imaging spectroradiometer data of SZ-3, and the quality of image is improved obviously. This will help to process the future similar instruments data.

  • PDF

Validation of Calibrated Wind Data Sector including Shadow Effects of a Meteorological Mast Using WindSim (WindSim을 이용한 풍황탑 차폐오차 구간의 보정치 검증)

  • Park, Kun-Sung;Ryu, Ki-Whan;Kim, Hyun-Goo
    • Journal of Wind Energy
    • /
    • v.4 no.2
    • /
    • pp.34-39
    • /
    • 2013
  • The wind resource assessment for measured wind data over 1 year by using the meteorological mast should be a prerequisite for business feasibility of the wind farm development. Even though the direction of boom mounting the wind vane and anemometer is carefully engineered to escape the interference of wakes generated from the met-mast structures, the shadow effect is not completely avoided due to seasonal winds in the Korean Peninsula. The shadow effect should be properly calibrated because it is able to distort the wind resources. In this study a calibration method is introduced for the measured wind data at Julpo in Jeonbuk Province. Each sectoral terrain conditions along the selected wind direction nearby the met-mast is investigated, and the distorted wind data due to shadow effects can be calibrated effectively. The correction factor is adopted for quantitative calibration by carrying out the WindSim analysis.

Mesoscale Features and Forecasting Guidance of Heavy Rain Types over the Korean Peninsula (한반도 호우유형의 중규모 특성 및 예보 가이던스)

  • Kim, Sunyoung;Song, Hwan-Jin;Lee, Hyesook
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.463-480
    • /
    • 2019
  • This study classified heavy rain types from K-means clustering for the hourly relationship between rainfall intensity and cloud top height over the Korean peninsula, and then examined their statistical characteristics for the period of June~August 2013~2018. Total rainfall amount of warm-type events was 2.65 times larger than that of the cold-type, whereas the lightning frequency divided by total rainfall for the warm-type was only 46% of the cold-type. Typical cold-type cases exhibited high cloud top height around 16 km, large reflectivity in the upper layer, and frequent lightning flashes under convectively unstable condition. Phenomenally, the cold-type cases corresponded to cloud cluster or multi-cell thunderstorms. However, two warm-type cases related to Changma and typhoon were characterized by heavy rainfall due to long duration, relatively low cloud top height and upper-level reflectivity, and the absence of lightning under the convectively neutral and extremely humid conditions. This study further confirmed that the forecast skill of rainfall could be improved by applying correction factor with the overestimation for cold-type and underestimation for warm-type cases in the Local Data Assimilation and Prediction System (LDAPS) operational model (e.g., BIAS score was improved by 5%).

Effects of Meteorological Elements in the Production of Food Crops: Focused on Regression Analysis using Panel Data (기상요소가 식량작물 생산량에 미치는 영향: 패널자료를 활용한 회귀분석)

  • Lee, Joong-Woo;Jang, Young Jae;Ko, Kwang-Kun;Park, Jong-Kil
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1171-1180
    • /
    • 2013
  • Recent climate change has led to fluctuations in agricultural production, and as a result national food supply has become an important strategic factor in economic policy. As such, in this study, panel data was collected to analyze the effects of seven meteorological elements and using the Lagrange multipliers method, the fixed-effects model for the production of five types of food crop and the seven meteorological elements were analyzed. Results showed that the key factors effecting increases in production of rice grains were average temperature, average relative humidity and average ground surface temperature, while wheat and barley were found to have positive correlations with average temperature and average humidity. The implications of this study are as follow. First, it was confirmed that the meteorological elements have profound effects on the production of food crops. Second, when compared to existing studies, the study was not limited to one food crop but encompassed all five types, and went beyond other studies that were limited to temperature and rainfall to include various meterological elements.