• Title/Summary/Keyword: meteorological effects

Search Result 515, Processing Time 0.026 seconds

Climatological Features of Summer Precipitation in Korea (우리나라 여름철 강수량의 기후적 분포 특성)

  • Jo, Ha-Man;Choe, Yeong-Jin;Gwon, Hyo-Jeong
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.3
    • /
    • pp.247-256
    • /
    • 1997
  • Some climatological features of summer precipitation in Korea were studyed using the precipitation data of 15 stations of Korea Meteorological Administration where more than 30 years data since 1961 are available. The study included statistical analysis of precipitation by climatological normal values, and comparison of inter-annual variation of annual precipitation, summer precipitation and precipitation during the Changma. The relationships between them were also analyzed. It was revealed that, in Korea, more than half of annual precipitation was concentrated in summer season (June to August), and it was usually influenced by the Changma. The ratio of summer and Changma precipitation to the annual precipitation showed that effect of Changma was bigger in the central inland area, while comparatively smaller in the east coastal area and Cheju Island due to topographical effects. It was also shown that the fluctuation of the annual precipitation was less variable than those of summer and Changma precipitations. Thus, it was suggested that understanding the variation features of summer precipitation associated with monsoon activities was very important to figure out the change of annual precipitation for the national water resources planning.

  • PDF

Assessment of merging weather radar precipitation data and ground precipitation data according to various interpolation method (보간법에 따른 기상레이더 강수자료와 지상 강수자료의 합성기법 평가)

  • Kim, Tae-Jeong;Lee, Dong-Ryul;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.12
    • /
    • pp.849-862
    • /
    • 2017
  • The increased frequency of meteorological disasters has been observed due to increased extreme events such as heavy rainfalls and flash floods. Numerous studies using high-resolution weather radar rainfall data have been carried out on the hydrological effects. In this study, a conditional merging technique is employed, which makes use of geostatistical methods to extract the optimal information from the observed data. In this context, three different techniques such as kriging, inverse distance weighting and spline interpolation methods are applied to conditionally merge radar and ground rainfall data. The results show that the estimated rainfall not only reproduce the spatial pattern of sub-hourly rainfall with a relatively small error, but also provide reliable temporal estimates of radar rainfall. The proposed modeling framework provides feasibility of using conditionally merged rainfall estimation at high spatio-temporal resolution in ungauged areas.

Selection of Particulate Matter Observation Measurement Sites in Urban Forest Using Wind Analysis (바람장 분석을 통한 도시숲 미세먼지 관측 장비 설치 지점 선정)

  • Lee, Ahreum;Jeong, Su-Jong;Park, Chan-Ryul;Park, Hoonyoung;Yoon, Jongmin;Son, Junghoon;Bae, Yeon
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.689-698
    • /
    • 2019
  • Air pollution in urban areas has become a serious problem in the recent years. Especially, high concentrations of particulate matter (PM) cause negative effects on human health. Several studies suggest urban forest as a tool for improving air quality because of the capability of forests in reducing PM concentrations through deposition and adsorption using leaf area. For this reason, the National Institute of Forest Science plans to install in-situ observation stations for PM and biogenic volatile organic compounds (BVOCs) on a national scale to verify the net effect of forests on urban air pollution. To measure the quantitative change of PM concentrations due to the urban forest, stations should be located within and outside the forest area with respect to atmospheric circulation. In this study, we analyze the wind direction at the potential measurement sites to assess suitable locations for detecting the effect of urban forests on air quality in five cities (i.e. Gwangju, Daegu, Busan, Incheon, and Ilsan). This technical note suggests effective locations of in-situ measurements by considering main wind direction in the five cities of this study. A measurement station network created in the future based on the selected locations will allow quantitative measurements of PM concentration and BVOCs emitted from the urban forest and help provide a comprehensive understanding of the forest capabilities of reducing air pollution.

Using Spatial Data and Land Surface Modeling to Monitor Evapotranspiration across Geographic Areas in South Korea (공간자료와 지면모형을 이용한 면적증발산 추정)

  • Yun J. I.;Nam J. C.;Hong S. Y.;Kim J.;Kim K. S.;Chung U.;Chae N. Y.;Choi T. J
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.3
    • /
    • pp.149-163
    • /
    • 2004
  • Evapotranspiration (ET) is a critical component of the hydrologic cycle which influences economic activities as well as the natural ecosystem. While there have been numerous studies on ET estimation for homogeneous areas using point measurements of meteorological variables, monitoring of spatial ET has not been possible at landscape - or watershed - scales. We propose a site-specific application of the land surface model, which is enabled by spatially interpolated input data at the desired resolution. Gyunggi Province of South Korea was divided into a regular grid of 10 million cells with 30m spacing and hourly temperature, humidity, wind, precipitation and solar irradiance were estimated for each grid cell by spatial interpolation of synoptic weather data. Topoclimatology models were used to accommodate effects of topography in a spatial interpolation procedure, including cold air drainage on nocturnal temperature and solar irradiance on daytime temperature. Satellite remote sensing data were used to classify the vegetation type of each grid cell, and corresponding spatial attributes including soil texture, canopy structure, and phenological features were identified. All data were fed into a standalone version of SiB2(Simple Biosphere Model 2) to simulate latent heat flux at each grid cell. A computer program was written for data management in the cell - based SiB2 operation such as extracting input data for SiB2 from grid matrices and recombining the output data back to the grid format. ET estimates at selected grid cells were validated against the actual measurement of latent heat fluxes by eddy covariance measurement. We applied this system to obtain the spatial ET of the study area on a continuous basis for the 2001-2003 period. The results showed a strong feasibility of using spatial - data driven land surface models for operational monitoring of regional ET.

Biological Characteristics of the Ginseng Stem Fungus Gnat (Phytosciara procera) and Its Environmental-friendly Control Using Modified Topping of Ginseng Peduncles

  • Lee, Seung-Hwan;Shin, Jung-Sup;Hong, Tae-Gyun;Ahn, Young-Joon;Cho, Dae-Hui
    • Journal of Ginseng Research
    • /
    • v.34 no.1
    • /
    • pp.23-29
    • /
    • 2010
  • This study examined the biological characteristics of the insect and examined potential cultural controls using peduncle topping methods. Ginseng stem fungus gnat eggs hatched after 5 days; ecdysis lasted 3-4 weeks, and after 5 days pupation, adults emerged. Adults deposited eggs 1-2 days after emerging, and the entire life cycle lasted 32-40 days. The fungus gnats laid eggs $327\times220{\mu}m$ in size on cut planes of stems, but not on intact stem parts that had not been topped or wounded. Analyses of major weather data for the experimental areas and weather data for the past 30 years acquired from the Korea Meteorological Administration revealed that fungus gnat dispersion was prevalent under highly humid conditions and in areas with thick and frequent fogging. Among the topping times examined, fungus gnat damage to ginseng was lowest when topping occurred in late May. Among the five different topping methods evaluated on experimental ginseng farms, the cumulative fungus gnat damage to ginseng was low (0.8%) under partial peduncle topping (removal of peduncle with lateral fruit remaining) and removal of only flower buds (0.6%), with fungus gnat control effects of 82% and 86%, respectively, compared to conventional topping (removal of peduncle about 5 cm above its base). No fungus gnat damage to ginseng was observed under the no-topping treatment. These results suggest that partial topping of peduncles, while letting lateral fruits remain, is a potentially environmentally friendly method of controlling the ginseng stem fungus gnat.

Skillful Wind Field Simulation over Complex Terrain using Coupling System of Atmospheric Prognostic and Diagnostic Models (대기예보모형과 진단모형 결합을 통한 복잡지형 바람장 해석능력 평가)

  • Lee, Hwa-Woon;Kim, Dong-Hyeok;Lee, Soon-Hwan;Kim, Min-Jung;Park, Soon-Young;Kim, Hyun-Goo
    • Journal of Environmental Science International
    • /
    • v.19 no.1
    • /
    • pp.27-37
    • /
    • 2010
  • A system coupled the prognostic WRF mesoscale model and CALMET diagnostic model has been employed for predicting high-resolution wind field over complex coastal area. WRF has three nested grids down to from during two days from 24 August 2007 to 26 August 2007. CALMET simulation is performed using both initial meteorological field from WRF coarsest results and surface boundary condition that is Shuttle Radar Topography Mission (SRTM) 90m topography and Environmental Geographic Information System (EGIS) 30m landuse during same periods above. Four Automatic Weather System (AWS) and a Sonic Detection And Ranging (SODAR) are used to verify modeled wind fields. Horizontal wind fields in CM_100m is not only more complex but better simulated than WRF_1km results at Backwoon and Geumho in which there are shown stagnation, blocking effects and orographically driven winds. Being increased in horizontal grid spacing, CM_100m is well matched with vertically wind profile compared SODAR. This also mentions the importance of high-resolution surface boundary conditions when horizontal grid spacing is increased to produce detailed wind fields over complex terrain features.

Advanced Forecasting Approach to Improve Uncertainty of Solar Irradiance Associated with Aerosol Direct Effects

  • Kim, Dong Hyeok;Yoo, Jung Woo;Lee, Hwa Woon;Park, Soon Young;Kim, Hyun Goo
    • Journal of Environmental Science International
    • /
    • v.26 no.10
    • /
    • pp.1167-1180
    • /
    • 2017
  • Numerical Weather Prediction (NWP) models such as the Weather Research and Forecasting (WRF) model are essential for forecasting one-day-ahead solar irradiance. In order to evaluate the performance of the WRF in forecasting solar irradiance over the Korean Peninsula, we compared WRF prediction data from 2008 to 2010 corresponding to weather observation data (OBS) from the Korean Meteorological Administration (KMA). The WRF model showed poor performance at polluted regions such as Seoul and Suwon where the relative Root Mean Square Error (rRMSE) is over 30%. Predictions by the WRF model alone had a large amount of potential error because of the lack of actual aerosol radiative feedbacks. For the purpose of reducing this error induced by atmospheric particles, i.e., aerosols, the WRF model was coupled with the Community Multiscale Air Quality (CMAQ) model. The coupled system makes it possible to estimate the radiative feedbacks of aerosols on the solar irradiance. As a result, the solar irradiance estimated by the coupled system showed a strong dependence on both the aerosol spatial distributions and the associated optical properties. In the NF (No Feedback) case, which refers to the WRF-only stimulated system without aerosol feedbacks, the GHI was overestimated by $50-200W\;m^{-2}$ compared with OBS derived values at each site. In the YF (Yes Feedback) case, in contrast, which refers to the WRF-CMAQ two-way coupled system, the rRMSE was significantly improved by 3.1-3.7% at Suwon and Seoul where the Particulate Matter (PM) concentrations, specifically, those related to the $PM_{10}$ size fraction, were over $100{\mu}g\;m^{-3}$. Thus, the coupled system showed promise for acquiring more accurate solar irradiance forecasts.

Garlic yields estimation using climate data (기상자료를 이용한 마늘 생산량 추정)

  • Choi, Sungchun;Baek, Jangsun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.4
    • /
    • pp.969-977
    • /
    • 2016
  • Climate change affects the growth of crops which were planted especially in fields, and it becomes more important to use climate data to predict the yields of the major vagetables. The variation of the crop products caused by climate change is one of the significant factors for the discrepancy of the demand and supply, and leads to the price instability. In this paper, using a panel regression model, we predicted the garlic yields with the weather conditions of different regions. More specifically we used the panel data of the several climate variables for 15 main garlic production areas from 2006 to 2015. Seven variables (average temperature, average maximum temperature, average minimum temperature, average surface temperature, cumulative precipitation, average relative humidity, cumulative duration time of sunshine) for each month were considered, and most significant 7 variables were selected from the total 84 variables by the stepwise regression. The random effects model was chosen by the Hausman test. The average maximum temperature (January), the cumulative precipitation (March, October), the cumulative duration time of sunshine (April, October) were chosen among the variables as the significant climate variables of the model

Classification of Climate Zones in South Korea Considering both Air Temperature and Rainfall (기온과 강수특성을 고려한 남한의 기후지역구분)

  • Park, Chang-Yong;Choi, Young-Eun;Moon, Ja-Yeon;Yun, Won-Tae
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.1
    • /
    • pp.1-16
    • /
    • 2009
  • This study aims to classify climate zones using Empirical Orthogonal Function and clustering analyses considering both air temperature and rainfall features in South Korea. When examining climatic characteristics of air temperature and rainfall by seasons, the distribution of air temperature is affected by topography and latitude for all seasons in South Korea. The distribution of rainfall demonstrated that the Yeongdong area, the southern coastal area and Jeju island have higher rainfall while the central area in Gyeongsangbuk-do is the least rainfall area. Clustering analyses of average linkage method and Ward's method was carried out using input variables derived from principal component scores calculated through Empirical Orthogonal Function analysis for air temperature and rainfall. Ward's method showed the best result of classification of climate zones. It was well reflected effects of topography, latitude, sea, the movement of surface pressure systems, and an administrative district.

Numerical Simulation of Water Level Change at the Coastal Area in the East Sea with the Inverted Barometer Effect (역기압 효과를 반영한 동해 연안 수위 변동 수치 재현)

  • Hyun, Sang Kwon;Kim, Sung Eun;Jin, Jae Yull;Do, Jong Dae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.1
    • /
    • pp.13-26
    • /
    • 2016
  • Sea water level variations are generally influenced by a variety of factors such as tides, meteorological forces, water temperature, salinity, wave, and topography, etc. Among non-tidal conditions, atmospheric pressure is one of the major factors causing water level changes. In the East Sea, due to small tidal range which is opposite to large tidal range of the Yellow Sea, it is difficult to predict water level changes using a numerical model, which consider tidal forcing only. This study focuses on the effects of atmospheric pressure variations on sea level predictions along the eastern coast of Korea. Telemac-2D model is simulated with the Inverted Barometer Effect(IBE), and then its results are analyzed. In comparison between observed data and predictions, the correlation of prediction with IBE and tide is better than that of tide-only case. Therefore, IBE is strongly suggested to be considered for the numerical simulations of sea level changes in the East Sea.