• Title/Summary/Keyword: meteorin

Search Result 2, Processing Time 0.015 seconds

Effect of Meteorin on the Regulation of TSP-1 via $PKC\delta$ Signalings in Astrocytes (성상세포에서 메테오린에 의한 TSP-1 발현조절에 $PKC\delta$ 신호경로의 연관성)

  • Park, Soo-Youn;Lee, Hye-Shin;Ko, Keum-Jae;Park, Jeong-Ae
    • YAKHAK HOEJI
    • /
    • v.53 no.3
    • /
    • pp.151-155
    • /
    • 2009
  • Meteorin in astrocytes has antiangiogenic activities via thrombospondin-1 (TSP-1), however, the regulatory mechanism has been unclear. Here we report that Meteorin upregulates TSP transcriptionally through luciferase reporter assays in astrocytes. Moreover, Meteorin activates $PKC\delta$ and ERK1/2 in astrocytes. Inhibition of $PKC\delta$ and ERK1/2 activities attenuated expression of TSP-1 by Meteorin in astrocytes. We, therefore, demonstrate that Meteorin activates $PKC\delta$ signaling and, in turn, increases TSP-1 expression in astrocytes to inhibit angiogenesis in the brain.

Isolation of a Hypoxia/Reoxygenation Regulatory Factor in Rat Astrocytes (흰쥐 성상세포에서 산소농도의존성 유전자의 분리)

  • Park Jeong-Ae;Song Hyun-Seok;Lee Hye-Shin;Kim Kyu-Won
    • YAKHAK HOEJI
    • /
    • v.50 no.2
    • /
    • pp.124-128
    • /
    • 2006
  • Astrocyte has emerged as an active regulator of brain function, which connects between blood vessels and neurons as well as is a structural component of the blood-brain barrier, From its structural characteristics, astrocyte seems to sensitively respond to oxygen tension, and, in turn, generate diverse cellular cascades. Therefore, to reveal astrocytlc events by oxygen change, we screened genes whose expressions are upregulated under reoxygenation after hypoxic stress using cDNA representational difference analysis (RDA) technique. Meteorin that regulates glial differentiation was isolated from primary cultured rat astrocytes as a hypoxia/reoxygenation regulatory factor. We cloned rat version of Meteorin (rMe-teorin) and determined full-size sequences of rMeteorin. In addition, RT-PCR analysis revealed that Meteorin was increased under reoxygenation in astrocytes and highly expressed in the developing brain. Collectively, these results suggest that Meteorin may regulate astrocyte-mediated effects in response to the change of oxygen tension in the pathophysiological states.