• Title/Summary/Keyword: metallic ion

Search Result 225, Processing Time 0.026 seconds

Electronic Structure, Bonding and Kithium Migration Effects of the Mixed Conductor $\beta-LiAl$ (혼합 전도체 $\beta-LiAl$의 전자구조, 결합과 Li 이온 이동에 따른 영향)

  • Jang, Gun-Eik;I.M Curelaru
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.3
    • /
    • pp.194-198
    • /
    • 1996
  • Detailed expermental studies of theelectronic structure of the valence and conduction bands of the mixed conductor $\beta$-LiAlindicate that a quasi-gap opens at the Fermi level, and the conduction states are highlylocalized, as opposed to the theoretical band structure calculations that predict predominant metallic behavior. Evidence for complex lithium migration effects involving the surface of Lial , induced by particle (electron or ion) bombardment and mechanical treatment , has been obtained as a byproduct of these experiments.

  • PDF

MnZn Ferrite Preparation by Coprecipitation Method (공침법에 의한 MnZn Ferrite 분말제조 연구)

  • 엄태형;고성만;서동수;양준환;박균하
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.6
    • /
    • pp.478-484
    • /
    • 1993
  • The influence of reaction conditions on the MnZn ferrite coprecipitation process were investigated using mixed metla sulfate solution and ammonium oxalate. In order to minimize the metallic ion losses and to control the particle size, the optimum reaction conditions were as follows; reaction temperature $25^{\circ}C$, metal sulfate concentration 0.3M, molar ratio of ammonium oxalate/mixed metal sulfate 1.1:1. The production yield was as high as 97.6% of theoretical yield at optimum reaction condition.

  • PDF

Fabrication of Nano-Size Specimens for Tensile Test Employing Nano-Indentation Device (나노 인장시험을 위한 압축 시험기용 인장시편 제작에 관한 연구)

  • Lim, Tae Woo;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.10
    • /
    • pp.911-916
    • /
    • 2015
  • In the nano/micro scale, material properties are dependent on the size-scale of a structure. However, conventional micro-scale tensile tests have limitations to obtain reliable values of nano-scale material properties owing to residual stress and elastic slippage in the gripping/aligning process. The indenter-driven nano-scale tensile test provides prominent advantages simple testing device, high-quality nano-scale metallic specimen with negligible residual stress. In this paper, two-types of specimens (a specimen with multi-testing parts and a specimen with a single-testing part) are discussed. Focused ion beam (FIB) is employed to fabricate a nano-scale specimen from a thin nickel film. Using the specimen with a single-testing part, we obtained a nano-scale stress-strain curve of electroplated nickel film.

The Corrosion Control Using CCPP(Calcium Carbonate Precipitation Potential )Index in Metallic Coupons ($CaCO_3$침전능 조절에 의한 금속시편에서의 부식방지)

  • 이재인;임진경;서상훈;김동윤;신춘환
    • Journal of Environmental Science International
    • /
    • v.9 no.6
    • /
    • pp.505-509
    • /
    • 2000
  • The purpose of this study was to evaluate the effects of $Ca(OH)_2$ and $CO_2$ additions on the corrosion of metal coupons(ductile iron, galvanized steel, copper and stainless steel). Corrosion rate and released metal ion concentration of ductile iron and galvanized steel decreased by adjusting alkalinity, calcium hardness and pH with $Ca(OH)_2$ & $CO_2$ additions on copper and stainless steel were less than those on ductile iron and galvanized steel. When ductile iron coupon was exposed to water treated with Ca(OH)$_2$&$CO_2$, additions, the main components of corrosion product formed on its surface were $CaCO_3$ and $Fe_2 O_3 or Fe_2 O_4$ which often reduce the corrosion rate by prohibiting oxygen transport to the metal surface.

  • PDF

Effects of Ion Nuclei in the Metallic Nanoparticle Generation Using a Supersonic Nozzle (초음속 노즐을 이용한 금속 나노 입자의 생성에서 이온 핵의 영향)

  • Jung, Jae-Hee;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1329-1334
    • /
    • 2005
  • Synthesis of silver nanoparticles by the supersonic nozzle expansion method with corona discharge ions was investigated. Corona discharge ions functioned as seeds for heterogeneous nucleation in the silver nanoparticles formation process and provided silver nanoparticles with electronic repulsive force that prevents aggregation of the particles. For ion ejecting, we used sonic-jet corona discharger. Upon application of the corona discharge ions, the mean diameter of the produced particles was decreased from 12.54 to 6.22nm and the standard deviation was decreased from 5.02 to 3.34nm. In addition, the agglomeration of silver nanoparticles was reduced.

Adsorption of Rare Earth Metal Ion on N-Phenylaza-15-Crown-5 Synthetic Resin with Styrene Hazardous Material

  • Kim, Se-Bong;Kim, Joon-Tae
    • Journal of Integrative Natural Science
    • /
    • v.7 no.2
    • /
    • pp.130-137
    • /
    • 2014
  • Resins were synthesized by mixing N-phenylaza-15-crown-5 macrocyclic ligand attached to styrene (2th petroleum in 4th class hazardous materials) divinylbenzene (DVB) copolymer with crosslink of 1%, 2%, 6%, and 12% by substitution reaction. The synthesis of these resins was confirmed by content of chlorine, element analysis, thermo gravimetric analysis (TGA), surface area, and IR-spectroscopy. The effects of pH, equilibrium arrival time, dielectric constant of solvent and crosslink on adsorption of metal ions by the synthetic resin adsorbent were investigated. The metal ions were showed fast adsorption on the resins above pH 4. The optimum equilibrium time for adsorption of metallic ions was about two hours. The adsorption selectivity determined in ethanol was in increasing order uranium (VI) > zinc (II) > europium (III) ions. The uranium ion adsorbed in the order of 1%, 2%, 6%, and 12% crosslink resin and adsorption of resin decreased in proportion to the order of dielectric constant of solvents.

THE EFFECT OF AN APPLIED BIAS UPON THE REFLECTANCE AND ADHESION OF SILVER FILMS BEING SPUTTER-DEPOSITED ON POLYESTER SUBSTRATE

  • Ri, Eui-Jae;Hoang, Tae-Su
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.257-264
    • /
    • 1999
  • Thin reflective films are synthesized by using PVD methods with a bright metal of Al or Ag. For purposes of improving the reflectance and adhesion of such films particularly, substrate bias was applied during sputtering (namely, ion-plating) to enhance the deposition process with higher energy. And we succeeded in fabricating a quality silver film which possesses an adhesion of $85{\;}Kg/\textrm{cm}^2$ and a high reflectivity of more than 96%. Both of reflectivity and adhesion are better in case of bias sputtering as controlled than nonbias sputtering, particularly the bias of 50-100 V showed most effective. The microstructures of sample films were examined by using various equipments and the XRD spectrum in particular showed that <111> direction is the preferred growth orientation.

  • PDF

Adsorption of Uranium(VI) Ion Utilizing Cryptand Ion Exchange Resin (Cryptand 이온교환 수지를 이용한 우라늄(VI) 이온의 흡착)

  • Park, Seong-Kyu;Kim, Joon-Tae
    • Analytical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.91-97
    • /
    • 2004
  • Cryptand ion exchange resins were synthesized with 1-aza-15-crown-5 macrocyclic ligand attached to styrene divinylbenzene (DVB) copolymer with crosslink of 1%, 2%, 5% and 10% by substitution reaction. The synthesis of these resins was confirmed by content of chlorine, element analysis, and IR-spectrum. The effects of pH, time, dielectric constant of solvent and crosslink on adsorption of uranium ($UO{_2}^{2+}$) ion were investigated. The uranium ion was showed fast adsorption on the resins above pH 3. The optimum equilibrium time for adsorption of metallic ions was about two hours. The adsorption selectivity determined in ethanol was in increasing order uranium ($UO{_2}^{2+}$), magnesium ($Mg^{2+}$), neodymium ($Nd^{3+}$) ion. The adsorption was in order of 1%, 2%, 5%, and 10% crosslink resin and adsorption of resin decreased in proportion to order of dielectric constant of solvents.

Lithium Recovery from NCM Lithium Ion Battery by Hydrogen Reduction Followed by Water Leaching (NCM계 리튬이온 배터리 양극재의 수소환원과 수침출에 의한 리튬 회수)

  • So-Yeong Lee;So-Yeon Lee;Dae-Hyeon Lee;Ho-Sang Sohn
    • Resources Recycling
    • /
    • v.33 no.1
    • /
    • pp.15-21
    • /
    • 2024
  • The demand for electric vehicles powered by lithium-ion batteries is continuously increasing. Recovery of valuable metals from waste lithium-ion batteries will be necessary in the future. This research investigated the effect of reaction temperature on the lithium recovery ratio from hydrogen reduction followed by water leaching from lithium-ion battery NCM-based cathode materials. As the reaction temperature increased, the weight loss ratio observed after initiation increased rapidly owing to hydrogen reduction of NiO and CoO; at the same time, the H2O amount generated increased. Above 602 ℃, the anode materials Ni and Co were reduced and existed in the metallic phases. As the hydrogen reduction temperature was increased, the Li recovery ratio also increased; at 704 ℃ and above, the Li recovery ratio reached a maximum of approximately 92%. Therefore, it is expected that Li can be selectively recovered by hydrogen reduction as a waste lithium-ion battery pretreatment, and the residue can be reprocessed to efficiently separate and recover valuable metals.

Studies on the Calcium Precipitation Treatment of Fluoride (칼슘 침전법에 의한 불소 처리에 관한 연구)

  • Kim, Young-Im;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.371-376
    • /
    • 2007
  • The features of precipitating reaction of fluorine have been examined under several aquatic conditions by employing calcium ion as a precipitant. Based on MINTEQ program, fluorine was found to exist in the forms of $H_2F_2$ and HF in strong acidic environment and change into $F^-$ with increasing pH. In the experimental condition, the precipitating reaction of fluorine progressed rapidly within a few minutes after the reaction started and reached its equilibrium in 10 minutes. As the addition of precipitant was increased, removal of fluorine by the formation of precipitate was promoted and its was also enhanced by the rise of pH. The precipitating reaction of fluorine was impeded when its initial concentration was low and X-ray analysis showed that the crystalline structure of precipitate was mainly $CaF_2$ with partly NaF. Coexisting phosphate in solution influenced the fluorine removal by impeding the precipitate formation and similar effect was found when metallic ion such as $Zn^{2+}$ was present with fluorine.