• Title/Summary/Keyword: metallic glass

Search Result 245, Processing Time 0.022 seconds

Soft Magnetic Properties of Ring-Shaped Fe-Co-B-Si-Nb Bulk Metallic Glasses

  • Ishikawa, Takayuki;Tsubota, Takahiro;Bitoh, Teruo
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.431-434
    • /
    • 2011
  • The reduction of the Nb content in the $(Fe_{0.75}B_{0.20}Si_{0.05})_{96}Nb_4$ bulk metallic glass (BMG) has been studied. The glass-forming ability (GFA) is reduced by decreasing the Nb content, but it can be enhanced by replacing partially Fe by Co. Furthermore, the saturation magnetization of the $(Fe_{0.8}Co_{0.2})_{76}B_{18}Si_3Nb_3$ BMG is 1.35 T, being with 13% larger than that of the base alloy $(Fe_{0.75}B_{0.20}Si_{0.05})_{96}Nb_4$. $(Fe_{0.8}Co_{0.2})_{76}B_{18}Si_3Nb_3$ BMG exhibits slightly larger $B_{800}$ (the magnetic flux density at 800 A/m) and smaller core losses (20%-30%) compared with the commercial Fe-6.5 mass% Si steel.

A Study on Behavior of Novel Non-Metallic Anchoring System for FRP Tendons (FRP 긴장재의 비금속 정착 시스템의 거동에 관한 연구)

  • 서관세;조병완;이계삼;김영진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.983-988
    • /
    • 2000
  • Anchoring systems with structural stability and endurance have been one of the most important elements for PSC structures, especially for the structures using non-corrosive FRP tendons. FRP tendons are in increasing use for underground and coastal structures constantly contacted with fresh water or sea water because of their superiority to metallic ones in corrosion-resistance. In this study new non-metallic anchoring system for FRP tendons has been tested and investigated. The newly developed anchoring system utilizes FRP pipes and HEM (Highly Expansive Mortar). The major factors considered in this experiment were expansive pressure of HEM during its hydration and the strength of GFRP(Glass Fiber Reinforced Plastic) Pipe. Anchoring forces of the new anchoring system were investigated from the pull-out testes. The authors analyzed pull-out procedures of the FRP tendons in the various pipe filled with HEM and suggested an improved idea to develop novel non-metallic anchoring system for FRP tendons

Microstructure Control of Cu-Ni-Zr-Ti Metallic Glass Composites by Multi-Pass Extrusion Process (다중압출공정을 이용한 Cu-Ni-Zr-Ti 비정질 복합재의 미세조직제어)

  • Kim, Taek-Soo;Lee, Jin-Kyu
    • Transactions of Materials Processing
    • /
    • v.16 no.5 s.95
    • /
    • pp.386-390
    • /
    • 2007
  • In order to, simultaneously, synthesize and control the size of microstructure of amorphous/crystalline composites, a repeated extrusion process was performed using the gas atomized $Cu_{54}Ni_6Zr_{22}Ti_{18}$ metallic glass powders and the crystalline brasses. The size of microstructure in the resultant composites was varied depending on the pass of extrusion as well as on the area reduction ratio. The microstructure could be estimated using an equation of $r_n=r_{n-1}/R^{1/2}$, where R is reduction ratio and $r_n$ is the resultant radius of the extruded bar after n pass. Theory of microstructural refinement as well as the relationship between the resultant microstructures and mechanical properties was discussed.

Nano-scale Shell in Phase Separating Gd-Ti-Al-Co Metallic Glass

  • Chang, Hye Jung;Park, Eun Soo;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.43 no.2
    • /
    • pp.98-101
    • /
    • 2013
  • In the present study, formation of yard and shell has been investigated in as-melt-spun $Gd_{30}Ti_{25}Al_{25}Co_{20}$ alloy using a variety of transmission electron microscopy techniques. The phase separation during cooling leads to the formation of the microstructure consisting of amorphous droplets with different size scales embedded in the amorphous matrix. Due to the interdiffusion at the interface after the first-step phase separation, ~50 nm-thick yard develops on the surface of the primary droplet particle. Due to the critical wetting phenomenon, ~5 nm thickness shell enveloping the droplet forms. The sell is enriched in Co and Ti, implying that the composition is close to that of the droplet.

Deformation and crystallization of Cu-base BMG alloy in the supercooled liquid region (과냉각 액상 구간에서 Cu-based BMG 합금의 결정화와 변형 거동)

  • Park, E.S.;Lee, J.H.;Kim, H.J.;Bae, J.C.;Huh, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.143-145
    • /
    • 2007
  • The correlation between crystallization and deformation behavior in the supercooled liquid region (SLR) of a $Cu_{54}Ni_{6}Zr_{22}Ti_{18}$ bulk metallic glass (BMG) alloy is investigated by compression tests, differential scanning calorimetry (DSC), electron energy loss spectrometry (EELS) and high resolution transmission electron microscopy (HRTEM). In the SLR, This BMG alloy was strongly depended on the deformation temperature and the alloy exhibits important change in deformation behavior after a given time which is directly connected to the development of crystallization. Compressive stress impeded decomposition and consequently retarded forming of nano-crystal, which led to enlarge the homogeneous deformation region of the BMG alloy in SLR during compression test.

  • PDF

The Effect of Aging Conditions on the Crystallization of $Fe_{78} _{13}Si_9$ Metallic Glass (시효 조건에 따른 $Fe_{78} _{13}Si_9$ 비정질 합금의 결정화 연구)

  • 김기욱;민복기;송재성;홍진완;이원재;이상래
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1988.10a
    • /
    • pp.5-7
    • /
    • 1988
  • Effect of isothermal aging on the crystallization of $Fe_{78}B_{13}Si_{9}$ metallic glass has been investigated by electrical resistivity, X-ray measurements, bending test, thermal analysis and transmission electron microscopy. Amorphous $Fe_{78}B_{13}Si_{9}$ alloy was annealed isothermally for 5 to 1200 mon. between 300 C and 540 C. It has been found that close relation between relative resistivity and X-ray diffraction pattern showed. The crystalline peak of $\alpha$-(Fe, Si) and Fe$_2$B are detected by X-ray experiment. The crystalline phases observed by TEM show $\alpha$-(Fe, Si) and Fe$_3$B with dendritic and cylindrical morphology, respectively. It has been also found that the embrittleness of aged samples rapidly increased with the crystallization and was shown before the crystallization.th the crystallization and was shown before the crystallization.

  • PDF

Comparative study of Metallic and Polymer Composite Shells for Underwater Vessels Using FEA

  • Govindaraj, Moorthy;Narayanarao, Narasimha Murthy Heddale;Munishaiah, Krishna;Nagappa, Raghavendra
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.3
    • /
    • pp.136-141
    • /
    • 2013
  • The present research was aimed at comparing performance of metallic and polymer composite shells of a typical underwater vessel of length and inner diameter of 1650 mm and 350 mm respectively, based on the critical buckling pressure for operating depth of 1000 m using ANSYS. High strength steel, aluminium alloy, titanium alloy, glass / epoxy and carbon / epoxy materials were examined. The results indicated weight savings of 46 % in carbon/epoxy and 31 % in glass / epoxy when compared with high strength steel, based on the thickness of the shell for sustaining 10 MPa buckling pressure.