• Title/Summary/Keyword: metallic element

Search Result 273, Processing Time 0.026 seconds

Effects of Process Parameter on Alpha-Case Formation of Ti and TiAl castings (Ti 및 TiAl 주조재의 ${\alpha}$-case 형성에 미치는 공정변수에 대한 영향)

  • Lee, Sang-Hwa;Kim, Myoung-Gyun;Sung, Si-Yuong;Kim, Young-Jig
    • Journal of Korea Foundry Society
    • /
    • v.23 no.3
    • /
    • pp.137-146
    • /
    • 2003
  • The main purpose of this study is to investigate the effects of process parameter on alpha-case formation of Ti and TiAl castings. The previous studies showed that the molten titanium is excessively reactive to the refractory oxide mold, resulting in alpha-caes of the titanium castings regardless of composition of titanium alloys. However, the behavior of the alpha-case formation of TiAl alloy is not consistent with conventional titanium alloy. In order to investigate the alpha-case formation of Ti and TiAl castings with process parameter, especially the associated factors of investment mold such as mold material, binder and mold preheating temperature. An attempt has been made to characterize the alpha-case of titanium casting by using optical microscope, EDS, XRD, EMPA and hardness profiles. The formation of the alpha-case on the surface of pure titanium during investment casting was rather by that of solid solution with metallic element from mold material. The required mold strength was obtained with $CaZrO_3$ because of the possibility of using water soluble binder. However, the separation phenomenon between facing and back-up mold materials should be considered. The interfacial reaction of TiAl alloy showed different behavior from that of pure titanium and $Al_2O_3$ was best mold materials. The effect of binder as well as mold material on the formation of alpha-case was significant.

A HISTOMORPHOMETRIC STUDY OF BONE APPOSITION TO NEWLY DEVELOPED TI-BASED ALLOYS IN RABBIT BONE (가토의 경골에 이식된 새로운 티타늄계 합금 주위의 골형성에 관한 형태학적 연구)

  • Kim, Tae-In
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.5
    • /
    • pp.701-720
    • /
    • 1998
  • Research advances in dental implantology have led to the development of several different types of materials and it is anticipated that continued research will lead to advanced dental implant materials. Currently used pure titanium has relatively low hardness and strength which may limit its ability to resist functional loads as a dental implant. Ti-6Al-4V also has potential problems such as corrosion resistance. osseointegration properties and neurologic disorder due to aluminium and vanadium, known as highly toxic elements, contained in Ti-6Al-4V. Newly developed titanium based alloys(Ti-20Zr-3Nb-3Ta-0.2Pd-1In, Ti-20Zr-3Nb-3Ta-0.2Pd) which do not contain toxic metallic components were designed by the Korea Institute of Science and Technology (KIST) with alloy design techniques using Zr, Nb, Ta, Pd, and In which are known as non-toxic elements. Biocompatibility and osseointegration properties of these newly designed alloys were evaluated after implantation in rabbit femur for 3 months. The conclusions were as follows : 1. Mechanical properties of the new designed Ti based alloys(Ti-20Zr-3Nb-3Ta-0.2Pd-1In, Ti-20Zr-3Nb-3Ta-0.2Pd) demonstrated close hardness and tensile strength values to Ti-6Al-4V. 2. New desinged experimental alloys showed stable corrosion resistance similar to the pure Ti but better than Ti-6Al-4V. However, the corrosion rate was higher for the new alloys. 3. Cell culture test showed that the new alloys have similar cell response compared with pure Ti and Ti-6Al-4V with no cell adverse reaction. 4. New designed alloys showed similar bone-metal contact ratio and osseointegration properties compared to pure Ti and Ti-6Al-4V after 3 months implantation in rabbit femur. 5. Four different surface treatments of the metals did not show any statistical difference of the cell growth and bone-metal contact ratio.

  • PDF

Investigation of Ice Impacts on Aluminum Skin Structure (알루미늄 표피 구조의 Ice 충돌 특성에 관한 연구)

  • Park, Gyu Cheol;Myeong, No Sin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.110-116
    • /
    • 2003
  • With the growth of aircraft performance and needs for light aircraft, the problems associated with hail impacts on aircraft during flights and grounding become and important issue. These hail encounters can cause severe damages to aircraft and result in major concerns in safety and cost. Since nearly all external components of the commercial and military aircraft-in particular, the nose section and the leading edge of the wing and tail-are subject to damages, much effort has been put into understanding of this problem. However, most of the previous studies have focused on the composite components and few results have been reported for the metallic components. In this paper, we study the ice impacts on the aluminum component with the finite element analysis method utilizing commercial non-linear dynamics solver LS-DYNA. The results are compared with the experimental data and a simple measure of the ice impact effects is proposed.

Adsorption of Uranium (VI) Ion on Synthetic Resin Adsorbent with Styrene Hazardous Materials (Styrene 위험물을 포함한 합성수지 흡착제에 의한 우라늄(VI) 이온의 흡착)

  • Kim, Joon-Tae
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.165-171
    • /
    • 2009
  • Resins were synthesized by mixing 1-aza-15-crown-5 macrocyclic ligand attached to styrene (2th petroleum in 4th class hazardous materials) and divinylbenzene (DVB) copolymer with crosslinkage of 1%, 2%, 8%, and 16% by substitution reaction. The characteristic of these resins was confirmed by content of chlorine, element analysis, thermogravimetric analysis (TGA), surface area (BET), and IR-spectroscopy. The effects of pH, time, dielectric constant of solvent and crosslinkage on adsorption of metal ion by the synthetic resin adsorbent were investigated. The metal ion showed a fast adsorption on the resins above pH 3. The optimum equilibrium time for adsorption of metallic ions was about two hours. The adsorption selectivity determined in ethanol was in an increasing order of uranium $(UO_2^{2+})$ > lead $(Pb^{2+})$ > chromium $(Cr^{3+})$ ion. The adsorption was in the order of 1%, 2%, 8%, and 16% crosslinkage resin and adsorption of resin decreased in proportion to the order of dielectric constant of solvents.

Intertextuality of Materials in the Contemporary Fashion (현대패션에 나타난 소재 상호텍스트성)

  • Kim, Sun-Young;Shim, Joon-Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.5
    • /
    • pp.741-752
    • /
    • 2008
  • The purposes of this study are to review the status of dress material in the contemporary fashion design by examining the intertextuality of many materials other than textiles used in the contemporary fashion and to show that the development of new fashion materials is a factor for designing competitiveness. The results of this study are summarized as follows: First, foods and natural objects are used as fashion materials to reveal natural beauty, and at the same time new formative elements are expressed in combinations of life and fashion. Second, common paper and luxurious jewelry are presented as a formative element symbolic of an aspect of the contemporary society or embodied in elaborate handicraft techniques. Those materials boost the luxuriousness of costume and create a strong futuristic image according to how they are expressed. Third, plastics available for a variety of objects in different shapes and colors offer such formative features that could be shaped with textiles, as high-end technology is introduced to fashion. Fourth, metallic materials have added freedom to design formality due to their qualities of convergence and displacement and by the introduction of brand-new technology, suggesting a new future for the fashion industry. Fifth, using a variety of anti-fashion materials including semiconductor chips, mirrors, vinyl, wires, and rubber makes a change in the existing points of view regarding the formality of things and helps create a special aesthetic effect in a visual respect to develop a strong intertextuality of materials.

Effect of Interstitial Elements on Ductile-Brittle Transition Behavior of Austenitic Fe-18Cr-10Mn-2Ni Alloys (오스테나이트계 Fe-18Cr-10Mn-2Ni 합금의 연성-취성 천이 거동에 미치는 침입형 원소의 영향)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.23 no.11
    • /
    • pp.649-654
    • /
    • 2013
  • The effect of interstitial elements on the ductile-brittle transition behavior of austenitic Fe-18Cr-10Mn-2Ni alloys with different nitrogen and carbon contents was investigated in this study. All the alloys exhibited ductile-brittle transition behavior because of unusual low-temperature brittle fracture, even though they have a faced-centered cubic structure. With the same interstitial content, the combined addition of nitrogen and carbon, compared to the sole addition of nitrogen, improved the low-temperature toughness and thus decreased the ductile-brittle transition temperature (DBTT) because this combined addition effectively enhances the metallic component of the interatomic bonds and is accompanied by good plasticity and toughness due to the increased free electron concentration. The increase in carbon content or of the carbon-to-nitrogen ratio, however, could increase the DBTT since either of these causes the occurrence of intergranular fracture that lead to the deterioration of the toughness at low temperatures. The secondary ion mass spectroscopy analysis results for the observation of carbon and nitrogen distributions confirms that the carbon and nitrogen atoms were significantly segregated to the austenite grain boundaries and then caused grain boundary embrittlement. In order to successfully develop austenitic Fe-Cr-Mn alloys for low-temperature application, therefore, more systematic study is required to determine the optimum content and ratio of carbon and nitrogen in terms of free electron concentration and grain boundary embrittlement.

Comparison of heavy metal concentrations in hairs of a small sample of Korean patients taking traditional herbal medicine

  • Park, Yeong-Chul;Kim, Myung-Dong;Park, Sung-Kyun;Kim, Hyun-Do;Lee, Sun-Dong
    • Advances in Traditional Medicine
    • /
    • v.10 no.3
    • /
    • pp.141-149
    • /
    • 2010
  • A concern of safety issue for traditional herbal medicine is the possibility of some herbs containing heavy metals responsible for several cases of metal poisoning. In our previous study, the physiological levels of heavy metals, such as Cd, Cu, Hg and Pb, were examined to evaluate a potential risk in patients taking herbal medicine. In this study, the levels of 12 heavy metals, including non-metallic element, Se, were analyzed in hair and compared to the results from the previous study. In the previous study, the levels of Cd, Cu, Hg and Pb in hair showed a significantly lower odds ratio than 1. In this study, however, all metals did not show any significant odds ratio higher or lower than 1 even if 5 of 12 metals showed lower odds ratio than 1. In addition, the levels of metal concentrations, especially for Cu, Fe, Pb and Zn, exceeding the WHO reference values were observed in hair. However, any evidence for metal accumulation in hair caused by taking herbal medicines for long duration was not observed in analysis of multiple regression and odds ratio from case-control study. This result would show another possibility for a role of herbs as a non-enzymatic chelator inhibiting the gastrointestinal absorption of heavy metals.

Big Data Platform Construction and Application for Smart City Development (스마트 시티의 발전을 위한 빅데이터 플랫폼 구축과 적용)

  • Moon, Seung Hyeog
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.529-534
    • /
    • 2020
  • The development of civilization is in line with evolution of cities and transportation technology caused by industrialization. Up to now, a city has been developed owing to transportation cost reduction and needs for land utilization as a limited core business district. Continuous increase of urban population density has accompanied by lots of problems socioeconomically such as rise of land value, traffic congestion, gap between the rich and poor, air pollution, etc. Those issues are difficult to be solved in existing city ecosystem. However, a clue for solving the problems could be found in there. The design of Seoul mid-night bus route was from analysis of movement of people in the rural area by using ICT so that a city ecosystem should be firstly analyzed for solving rural issues. If the cause of those is found, big data platform construction is required to raise the life quality of citizen and the problems could be solved. Big data should be located in the middle of the platform connected with every element of city based on ICT for real-time collection, analysis and application. This paper addresses construction of big data platform and its application for sustainable smart city.

A Study of Lamella Tearing being Produced by Corner Joint Welding in Box Column of Ultra Thick Plate (극후판 Box Column의 Corner Joint 용접시 발생하는 Lamella Tearing에 관한 연구)

  • Han-Sur Bang;Seong-Joo Kim;Jong-Myung Kim;Woong-Sung Jang;Young-Seob Kwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.95-104
    • /
    • 1999
  • Use of the ultra thick plate is being continuously increased in large off-shore structures, ships, bridges and skyscraper construction, due to increasingly large-sized steel structures and it seems that this trend will be maintained. But, occurrence of the lamella tearing has been reported in ultra thick plate used for construction. It is reportedly caused by impurities such S(sulfur), P(phosphorus) and others accumulated in the ultra thick plate's centerline in the thickness direction with strip shape or by restraint residual stress caused by the welding. In the ultra thick plate made by continuous casting method, occurrence of lamination is difficult to avoid because of the properties of production procedure. Therefore, with a view to reducing the lamella properties, this report tries tearing in the steel structure in the view of welding strength rather than metallic properties, this report tries to seek the optimum groove and welding procedure by using the computer simulation based on FEM(Finite Element Method).

  • PDF

Adsorption of Uranium(VI) Ion Utilizing Cryptand Ion Exchange Resin (Cryptand 이온교환 수지를 이용한 우라늄(VI) 이온의 흡착)

  • Park, Seong-Kyu;Kim, Joon-Tae
    • Analytical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.91-97
    • /
    • 2004
  • Cryptand ion exchange resins were synthesized with 1-aza-15-crown-5 macrocyclic ligand attached to styrene divinylbenzene (DVB) copolymer with crosslink of 1%, 2%, 5% and 10% by substitution reaction. The synthesis of these resins was confirmed by content of chlorine, element analysis, and IR-spectrum. The effects of pH, time, dielectric constant of solvent and crosslink on adsorption of uranium ($UO{_2}^{2+}$) ion were investigated. The uranium ion was showed fast adsorption on the resins above pH 3. The optimum equilibrium time for adsorption of metallic ions was about two hours. The adsorption selectivity determined in ethanol was in increasing order uranium ($UO{_2}^{2+}$), magnesium ($Mg^{2+}$), neodymium ($Nd^{3+}$) ion. The adsorption was in order of 1%, 2%, 5%, and 10% crosslink resin and adsorption of resin decreased in proportion to order of dielectric constant of solvents.