• 제목/요약/키워드: metallic conductivity

검색결과 153건 처리시간 0.032초

First Studies for the Development of Computational Tools for the Design of Liquid Metal Electromagnetic Pumps

  • Maidana, Carlos O.;Nieminen, Juha E.
    • Nuclear Engineering and Technology
    • /
    • 제49권1호
    • /
    • pp.82-91
    • /
    • 2017
  • Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is a source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermomagnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. First studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.

Studies of Nonstoichiometry and Physical Properties of the Perovskite $Sm_{1-x}Sr_xCoO_{3-y}$ System

  • 강진우;류광현;여철현
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권7호
    • /
    • pp.600-603
    • /
    • 1995
  • A series of samples in the Sm1-xSrxCoO3-y(x=0.00, 0.25, 0.50, 0.75 and 1.00) system has been prepared at 1200 ℃ under ambient atmosphere. The X-ray diffraction patterns of the samples with x=0.00 and 0.25 are indexed with orthorhombic symmetry like GdFeO3 and x=0.50 appears to be perfectly cubic. In the tetragonal system (x=0.75), the structure is similar to that of SrCoO2.80. The composition of x=1.00, SrCoO2.52, shows the brownmillerite-type structure. The reduced lattice volume is increased with x value in this system. The chemical analysis shows the τ value (the amount of the Co4+ ions in the system) is maximized at the composition of x=0.50. Nonstoichiometric chemical formulas are determined by the x, τ and y values. The electrical conductivity has been measured in the temperature range of 78 to 1000 K. The activation energy is minimum for those of x=0.25 and x=0.50 with metallic behavior. First-order semiconductor-to-metal transition of SmCoO3 is not observed. Instead, a broad, high-order semiconductor-to-metal transition is observed. In general, the effective magnetic moment is increased with increasing τ values at low temperature. At high temperature, the magnetic moment is maximum for that of x=0.00. The 3d-electrons are collective and give ferromagnetism in x=0.50.

SI-BASED MAGNETIC TUNNELING TRANSISTOR WITH HIGH TRANSFER RATIO

  • S. H. Jang;Lee, J. H.;T. Kang;Kim, K. Y.
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2003년도 하계학술연구발표회 및 한.일 공동심포지엄
    • /
    • pp.24-24
    • /
    • 2003
  • Metallic magnetoelectronic devices have studied intensively and extensively for last decade because of the scientific interest as well as great technological importance. Recently, the scientific activity in spintronics field is extending to the hybrid devices using ferromagnetic/semiconductor heterostructures and to new ferromagnetic semiconductor materials for future devices. In case of the hybrid device, conductivity mismatch problem for metal/semiconductor interface will be able to circumvent when the device operates in ballistic regime. In this respect, spin-valve transistor, first reported by Monsma, is based on spin dependent transport of hot electrons rather than electron near the Fermi energy. Although the spin-valve transistor showed large magnetocurrent ratio more than 300%, but low transfer ratio of the order of 10$\^$-5/ prevents the potential applications. In order to enhance the collector current, we have prepared magnetic tunneling transistor (MTT) with single ferromagnetic base on Si(100) collector by magnetron sputtering process. We have changed the resistance of tunneling emitter and the thickness of baser layer in the MTT structure to increase collector current. The high transfer ratio of 10$\^$-4/ range at bias voltage of more than 1.8 V, collector current of near l ${\mu}$A, and magnetocurrent ratio or 55% in Si-based MTT are obtained at 77K. These results suggest a promising candidate for future spintronic applications.

  • PDF

Sb가 결핍된 N형 Skutterudite Co4Sb12의 열전 특성 (Thermoelectric Properties of Sb Deficiency N-Type Skutterudite Co4Sb12)

  • 탁장렬;;정민석;이나영;남우현;서원선;조중영
    • 한국전기전자재료학회논문지
    • /
    • 제32권6호
    • /
    • pp.496-500
    • /
    • 2019
  • In this study, we investigate the effect of an Sb-deficiency on the thermoelectric properties of double-filled n-type skutterudite ($In_{0.05}Yb_{0.15}Co_4Sb_{12-x}$). Samples were prepared by encapsulated induction melting, consecutive long-time annealing, and finally spark plasma sintering processes. The Sb-deficient sample contained a $CoSb_2$ secondary phase. Both the double-filled n-type skutterudite pristine and Sb-deficient samples showed metallic behavior in electrical conductivity with increasing temperature. The carrier concentration of the Sb-deficient sample decreased compared with that of the pristine sample. Due to a decrease in carrier concentration, the Sb deficient sample showed decreased electrical conductivity and an increased Seebeck coefficient compared with the conductivity and coefficient of the pristine sample. Furthermore, the Sb deficient sample showed an increase in the power factor (${\sigma}{\cdot}S^2$); the power factor maximum shifted to athe lower temperature side than ones of the pristine sample. As a result, the Sb-deficient sample represents an improved average figure of merit (ZT) and a $ZT_{max}$ temperature lower than that of the pristine sample. Therefore, we propose that Sb-deficient double-filled n-type skutterudite thermoelectric material ($In_{0.05}Yb_{0.15}Co_4Sb_{12-x}$) be used in the 573~673 K temperature range.

Electrical Characterization of Ultrathin Film Electrolytes for Micro-SOFCs

  • Shin, Eui-Chol;Ahn, Pyung-An;Jo, Jung-Mo;Noh, Ho-Sung;Hwang, Jaeyeon;Lee, Jong-Ho;Son, Ji-Won;Lee, Jong-Sook
    • 한국세라믹학회지
    • /
    • 제49권5호
    • /
    • pp.404-411
    • /
    • 2012
  • The reliability of solid oxide fuel cells (SOFCs) particularly depends on the high quality of solid oxide electrolytes. The application of thinner electrolytes and multi electrolyte layers requires a more reliable characterization method. Most of the investigations on thin film solid electrolytes have been made for the parallel transport along the interface, which is not however directly related to the fuel cell performance of those electrolytes. In this work an array of ion-blocking metallic Ti/Au microelectrodes with about a $160{\mu}m$ diameter was applied on top of an ultrathin ($1{\mu}m$) yttria-stabilized-zirconia/gadolinium-doped-ceria (YSZ/GDC) heterolayer solid electrolyte in a micro-SOFC prepared by PLD as well as an 8-${\mu}m$ thick YSZ layer by screen printing, to study the transport characteristics in the perpendicular direction relevant for fuel cell operation. While the capacitance variation in the electrode area supported the working principle of the measurement technique, other local variations could be related to the quality of the electrolyte layers and deposited electrode points. While the small electrode size and low temperature measurements increaseed the electrolyte resistances enough for the reliable estimation, the impedance spectra appeared to consist of only a large electrode polarization. Modulus representation distinguished two high frequency responses with resistance magnitude differing by orders of magnitude, which can be ascribed to the gadolinium-doped ceria buffer electrolyte layer with a 200 nm thickness and yttria-stabilized zirconia layer of about $1{\mu}m$. The major impedance response was attributed to the resistance due to electron hole conduction in GDC due to the ion-blocking top electrodes with activation energy of 0.7 eV. The respective conductivity values were obtained by model analysis using empirical Havriliak-Negami elements and by temperature adjustments with respect to the conductivity of the YSZ layers.

Electrical Properties of Transparent Conductive Films of Single-Walled Carbon Nanotubes with Their Purities

  • ;;;이내성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.56-56
    • /
    • 2010
  • Single-walled carbon nanotubes (SWCNTs) have attracted much attention as a promising material for transparent conducting films (TCFs), due to their superior electrical conductivity, high mechanical strength, and complete flexibility as well as their one-dimensional morphological features of extremely high length-to-diameter ratios. This study investigated three kinds of SWCNTs with different purities: as-produced SWCNTs (AP-SWCNTs), thermally purified SWCNTs (TH-SWCNTs), thermally and acid purified SWCNTs (TA-SWCNTs). The purity of each SWCNT sample was assessed by considering absorption peaks in the semiconducting ($S_{22}$) and metallic ($M_{11}$) tubes with UV-Vis NIR spectroscopy and a metal content with thermogravimetric analysis (TGA). The purity increased as proceeding the purification stages from the AP-SWCNTs through the thermal purification to the acid purification. The samples containing different contents of SWCNTs were dispersed in water using sodium dodecyl benzensulfate (SDBS). Aqueous suspensions of different purities of SWCNTs were prepared to have similar absorbances in UV-Vis absorption measurements so that one can make the TCFs possess similar optical transmittances irrespective of the SWCNT purity. Transparent conductive SWCNT networks were formed by spraying an SWCNT suspension onto a poly(ethyleneterephthalate) (PET) substrate. As expected, the TCFs fabricated with AP-SWCNTs showed very high sheet resistances. Interestingly, the TH-SWCNTs gave lower sheet resistances to the TFCs than the TA-SWCNTs although the latter was of higher purity in the SWCNT content than the former. The TA-SWCNTs would be shortened in length and be more bundled by the acid purification, relative to the TH-SWCNTs. For both purified (TH, TA) samples, the subsequent nitric acid ($HNO_3$) treatment greatly lowered the sheet resistances of the TCFs, but almost eliminated the difference of sheet resistances between them. This seems to be because the electrical conductivity increased not only due to further removal of surfactants but also due to p-type doping upon the acid treatment. The doping effect was likely to overwhelm the effect of surfactant removal. Although the nitric acid treatment resulted in the similar. electrical properties to the two samples, the TCFs of TH-SWCNTs showed much lower sheet resistances than those of the TA-SWCNTs prior to the acid treatment.

  • PDF

펨토초 레이저와 나노초 레이저를 이용한 ITO Glass의 어블레이션 비교 연구 (A Comparative Study of ITO Glass Ablation Using Femtosecond and Nanosecond Lasers)

  • 전진우;신영관;김훈영;최원석;지석영;강희신;안상훈;장원석;조성학
    • 한국광학회지
    • /
    • 제28권6호
    • /
    • pp.356-360
    • /
    • 2017
  • ITO는 높은 전기 전도도와 가시광선, 근적외선 영역에서 투명성을 가진다. LCD, OLED 등을 포함한 광학에 적용되는 부품들의 제조에 투명전극으로 ITO가 사용되고 있다. 가시광선 영역에서의 투명성과 높은 전도도 때문에 다양한 전기, 디스플레이 센서의 전극으로 이용되었다. 한 가지 사안은 기판의 특성에 충격없이 ITO, 금속 필름같은 특정한 영역의 층을 제거하는 부분이다. 레이저를 사용한 유리 위의 ITO 제거는 기존 방법에 비해 친환경적이다. 본 연구는 펨토초 레이저와 나노초 레이저를 사용하여 ITO를 제거하는 비교분석이다.

$Nd_{-x}Sr_{x}CoO_{3-y}$계의 비화학양론 및 자기적 특성 (Nonstoichiometry and Magnetic Property of the $Nd_{-x}Sr_{x}CoO_{3-y}$ System)

  • 여철현;노권선;이성주;김규홍;오응주
    • 대한화학회지
    • /
    • 제35권3호
    • /
    • pp.211-218
    • /
    • 1991
  • $Nd_{-x}Sr_{x}CoO_{3-y}$계(x = 0.00, 0.25, 0.50, 0.75 및 1.00)의 시료들을 1200${\circ}$C, 대기압하에서 제조하였다. 제조된 고용체들을 X-선 회절, 열분석, 전자현미경 마이크로그래프로 분석한다. X-선 회절분석에 의하면 조성이 x = 0.00, 0.25, 0.50 및 0.75인 시료는 입방정계이고, x = 1.00인 시료는 사방정계이다. 이 계에서 환산 격자부피는 x값이 증가함에 따라 증가한다. $Co^{4+}$의 몰비인 ${\tau}$값은 요오드 적정법으로 결정하고, x = 0.50에서 최대값을 갖는다. 자기측정에 의하면 조성이 x = 0.00, 0.25, 0.50 및 0.75에서는 강자성이 나타나고 x = 1.00에서는 반강자성이 나타난다. 전기전도도 측정에 의하면 x = 0.00, 0.25 및 1.00에서는 반도성을 나타내고 x = 0.50 및 0.75에서는 금속성을 나타낸다. 시료들의 자기적 성질들을 비화학양론적 조성식과 관련시켜 논의하였다.

  • PDF

Microstructure and Characterization of Ni-C Films Fabricated by Dual-Source Deposition System

  • Han, Chang-Suk;Kim, Sang-Wook
    • 한국재료학회지
    • /
    • 제26권6호
    • /
    • pp.293-297
    • /
    • 2016
  • Ni-C composite films were prepared by co-deposition using a combined technique of plasma CVD and ion beam sputtering deposition. Depending on the deposition conditions, Ni-C thin films manifested three kinds of microstructure: (1) nanocrystallites of non-equilibrium carbide of nickel, (2) amorphous Ni-C film, and (3) granular Ni-C film. The electrical resistivity was also found to vary from about $10^2{\mu}{\Omega}cm$ for the carbide films to about $10^4{\mu}{\Omega}cm$ for the amorphous Ni-C films. The Ni-C films deposited at ambient temperatures showed very low TCR values compared with that of metallic nickel film, and all the films showed ohmic characterization, even those in the amorphous state with very high resistivity. The TCR value decreased slightly with increasing of the flow rate of $CH_4$. For the films deposited at $200^{\circ}C$, TCR decreased with increasing $CH_4$ flow rate; especially, it changed sign from positive to negative at a $CH_4$ flow rate of 0.35 sccm. By increasing the $CH_4$ flow rate, the amorphous component in the film increased; thus, the portion of $Ni_3C$ grains separated from each other became larger, and the contribution to electrical conductivity due to thermally activated tunneling became dominant. This also accounts for the sign change of TCR when the filme was deposited at higher flow rate of $CH_4$. The microstructures of the Ni-C films deposited in these ways range from amorphous Ni-C alloy to granular structures with $Ni_3C$ nanocrystallites. These films are characterized by high resistivity and low TCR values; the electrical properties can be adjusted over a wide range by controlling the microstructures and compositions of the films.

154 kV 지중송전선로의 고정용 금구류에서 발생하는 와전류 및 히스테리시스 손실 분포 해석 (Analysis of Eddy Current and Hysteresis Loss Distribution from Fixing Structure of 154 kV Underground Transmission Cable)

  • 송혜은;임상현;김경윤;박관수
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제4권1호
    • /
    • pp.9-12
    • /
    • 2018
  • 최근 도시미관과 편리성을 위해 지중송전선로의 사용이 확대되고 있다. 하지만 지중송전선로에서 발생하는 손실, 특히 24시간 상시 운영되는 3상 케이블을 지지하고 있는 금구류에서 발생하는 손실에 관한 연구는 부족하다. 케이블지지 금구류는 도전율과 투자율을 가지는 재질로 구성되어지기 때문에 케이블에 흐르는 전류에 의한 자기장 때문에 와전류 및 히스테리시스 손실이 발생하게 된다. 이 때 발생하는 손실은 전력 에너지 전달 효율에 악영향을 미치기 때문에 손실에 대한 연구가 필요하다. 따라서 본 논문에서는 3차원 유한요소해석을 통하여 케이블의 주변 금구류에서 발생하는 와전류 및 히스테리시스 손실에 대하여 분석하였다.