• Title/Summary/Keyword: metal-binding proteins

Search Result 48, Processing Time 0.031 seconds

Toxicological Relevance of Transporters

  • Maeng, Han-Joo;Chung, Suk-Jae
    • Toxicological Research
    • /
    • v.23 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • Transporters are membrane proteins that mediate the transfer of substrate across the cellular membrane. In this overview, the characteristics and the toxicological relevance were discussed for various types of transporters. For drug transporters, the overview focused on ATP-binding cassette transporters and solute carrier family 21A/22A member transporters. Except for OCTN transporters and OATP transporters, drug transporters tend to have broad substrate specificity, suggesting drug-drug interaction at the level of transport processes (e.g., interaction between methotrexate and non-steroidal anti-inflammatory agents) is likely. For metal transporters, transporters for zinc, copper and multiple metals were discussed in this overview. These metal transporters have comparatively narrow substrate specificity, except for multiple metal transporters, suggesting that inter-substrate interaction at the level of transport is less likely. In contrast, the expressions of the transporters are often regulated by their substrates, suggesting cellular adaptation mechanism exists for these transporters. The drug-drug interactions in drug transporters and the cellular adaptation mechanisms for metal transporters are likely to lead to alterations in pharmacokinetics and cellular metal homeostasis, which may be linked to the development of toxicity. Therefore, the transporter-mediated alterations may have toxicological relevance.

Distribution of Insulin-Like Growth Factor-Binding Proteins(IGFBPs) and IGFBP-3 Proteolysis in Noninsulin-Dependent Diabetes Mellitus Serum (인슐린 비의존형 당뇨병 환자의 혈청 중 Insulin-Like Growth Factor-Binding Proteins(IGFBPs)의 분포 및 IGFBP-3의 분해)

  • Lee, Hwa-Jin;Kim, Sung-Hyun;Kwon, Mi-Jin;Nam, Taek-Jeong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.2
    • /
    • pp.285-290
    • /
    • 1997
  • The insulin-like growth factors(IGFs) are bound to several binding proteins(IGFBPs) that appear to regulate IGF transport, receptor binding, and its action. The concentration of these peptides are altered by catabolic conditions. To determine IGF-I and IGFBP levels in noninsulin-dependent diabetes mellitus (NIDDM), sera was obtained from 5 patients and 7 controls. Serum levels of IGF-I in NIDDM were lower than those in either of the controls. By western immunoblot analysis, especially IGFBP-1 levels are increased, whereas IGFBP-3 levels decreased and their fragments was increased in NIDDM serum. IGFBP-3 proteolytic activity in NIDDM sera was inhibited by phenylmethylsulfonylfluoride (PMSF), aprotinin, and ethylenediaminetetraacetic acid(EDTA). This pattern of inhibition was consistent with a metal-dependent serine protease. By gelatin zymography, these proteolytic enzymes were identified as the size of 97 and 69 kDa. IGFBP-1, which is primarily insulin regulated, was increased in NIDDM and may modulate circulating IGF-I levels by regulating capillary passage of IGF-I. IGFBP-3 proteolysis markedly reduces its affinity for the IGFs, particularly for IGF-I. This accelerates their kinetics of dissociation, thereby increasing the proportions of IGF-I in free form and its availability to the cells.

  • PDF

FMN-Based Fluorescent Proteins as Heavy Metal Sensors Against Mercury Ions

  • Ravikumar, Yuvaraj;Nadarajan, Saravanan Prabhu;Lee, Chong-Soon;Jung, Seunho;Bae, Dong-Ho;Yun, Hyungdon
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.530-539
    • /
    • 2016
  • Bacterial light-oxygen-voltage-sensing photoreceptor-derived flavin mononucleotide (FMN)-based fluorescent proteins act as a promising distinct class of fluorescent proteins utilized for various biomedical and biotechnological applications. The key property of its independency towards oxygen for its chromophore maturation has greatly helped this protein to outperform the other fluorescent proteins such as GFP and DsRed for anaerobic applications. Here, we describe the feasibility of FMN-containing fluorescent protein FbFP as a metal-sensing probe by measuring the fluorescence emission changes of a protein with respect to the concentration of metal ions. In the present study, we demonstrated the mercury-sensing ability of FbFP protein and the possible amino acids responsible for metal binding. A ratiometric approach was employed here in order to exploit the fluorescence changes observed at two different emission maxima with respect to Hg2+ at micromolar concentration. The engineered variant FbFPC56I showed high sensitivity towards Hg2+ and followed a good linear relationship from 0.1 to 3 μM of Hg2+. Thus, further engineering with a rational approach would enable the FbFP to be developed as a novel and highly selective and sensitive biosensor for other toxic heavy metal ions as well.

Modified Suppression Subtractive Hybridization Identifies an AP2-containing Protein Involved in Metal Responses in Physcomitrella patens

  • Cho, Sung Hyun;Hoang, Quoc Truong;Phee, Jeong Won;Kim, Yun Young;Shin, Hyun Young;Shin, Jeong Sheop
    • Molecules and Cells
    • /
    • v.23 no.1
    • /
    • pp.100-107
    • /
    • 2007
  • The moss Physcomitrella patens has two life cycles, filamentous protonema and leafy gametophore. A modified from of suppression subtractive hybridization (SSH), mirror orientation selection (MOS), was applied to screen genes differentially expressed in the P. patens protonema. Using reverse Northern blot analysis, differentially expressed clones were identified. The identified genes were involved mainly in metal binding and detoxification. One of these genes was an AP2 (APETALA2) domain-containing protein (PpACP1), which was highly up-regulated in the protonema. Alignment with other AP2/EREBPs (Ethylene Responsive Element Binding Proteins) revealed significant sequence homology of the deduced amino acid sequence in the AP2/EREBP DNA binding domain. Northern analysis under various stress conditions showed that PpACP1 was induced by ethephon, cadmium, copper, ABA, IAA, and cold. In addition, it was highly expressed in suspension-cultured protonema. We suggest that PpACP1 is involved in responses to metals, and that suspension culture enhance the expression of genes responding to metals.

Rescue of Oxidative Stress by Molecular Chaperones in Yeast

  • Ueom Jeonghoon;Kang Sooim;Lee Kyunghee
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.76-78
    • /
    • 2002
  • Heat shock proteins (HSPs) are induced in most living cells by mild heat treatment, ethanol, heavy metal ions and hypoxia. In yeast Saccharomyces cerevisiae, mild heat pretreatment strongly induces Hsp104 and thus provide acquired thermotolerance. The ability of hsp104 deleted mutant $({\triangle}hsp104)$ to acquire tolerance to extreme temperature is severely impaired. In providing thermotolerance, two ATP binding domains are indispensible, as demonstrated in ClpA and ClpB proteases of E. coli. The mechanisms by which Hsp104 protects cells from severe heat stress are not yet completely elucidated. We have investigated regulation of mitochondrial metabolic pathways controlled by the functional Hsp104 protein using $^{13}C_NMR$ spectroscopy and observed that the turnover rate of TCA cycle was enhanced in the absence of Hsp104. Production of ROS, which are toxic to kill cells radiply via oxidative stress, was also examined by fluorescence assay. Mitochondrial dysfunction was manifested in increased ROS levels and higher sensitivity for oxidative stress in the absence of Hsp104 protein expressed. Finally, we have identified mitochondrial complex I and Ferritin as binding protein(s) of Hsp104 by yeast two hybrid experiment. Based on these observations, we suggest that Hsp104 protein functions as a protector of oxidative stress via either keeping mitochondrial integrity, direct binding to mitochonrial components or regulating metal-catalyzed redox chemistry.

  • PDF

pT7MT, a Metallothionein 2A-Tagged Novel Prokaryotic Fusion Expression Vector

  • Marikar, Faiz M.M.T.;Fang, Lei;Jiang, Shu-Han;Hua, Zi-Chun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.728-732
    • /
    • 2007
  • In the present article, a novel fusion expression vector for Escherichia coli was developed based on the pTORG plasmid, a derivative of pET32a. This vector, named pT7MT(GenBank Accession No DQ504436), carries a T7 promoter and it drives the downstream gene encoding Metallothionein 2A(MT2A). There are in-framed multiple cloning sites(MCS) downstream of the MT2A gene. A target gene can be cloned into the MCS and fused to the C-terminal of the MT2A gene in a compatible open reading frame(ORF) to achieve fusion expression. The metal-binding capability of MT2A allows the purification of fusion proteins by metal chelating affinity chromatography, known as $Ni^{2+}$-affinity chromatography. Using this expression vector, we successfully got the stable and high-yield expression of MT2A-GST and MT2A-Troponin I fusion proteins. These two proteins were easily purified from the supernatant of cell lysates by one-step $Ni^{2+}$-affinity chromatography. The final yields of MT2A-GST and MT2A-Troponin I were 30mg/l and 28mg/l in LB culture, respectively. Taken together, our data suggest that pT7MT can be applied as a useful expression vector for stable and high-yield production of fusion proteins.

Picosecond Protein Fluorescence and Time-Resolved $Eu^{3+}$ Luminescence Spectroscopic Studies on the Roles of $Ca^{2+}$ in Subtilisin Carlsberg

  • Lee, Sunbae;Jang, Du-Jeon
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1997.07a
    • /
    • pp.44-44
    • /
    • 1997
  • Ca$^{2+}$ is one of the most common metal ions associated with proteins, playing more or less well-defined functional roles in biological activities. In protease, the presence of $Ca^{2+}$ slows down autolysis and enhances thermal stability. Subtilisin, one of the best studied proteases, is known to have two $Ca^{2+}$ -binding sites.(omitted)

  • PDF

$^{13}C$ and $^{57}Fe$ END OR of Nitrogenase: Can it Tell the Substrate-Binding Site in the Active Site?

  • 이홍인
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2002.06b
    • /
    • pp.18-18
    • /
    • 2002
  • Nitrogenase, comprised of the MoFe and Fe proteins, catalyzes the reduction of dinitrogen to ammonia at ambient temperature and pressure. The MoFe protein contains two metal centers, the P-cluster (Fe8S7-8) and the FeMo-cofactor (Fe7S9:homocitrate), the substrate binding site. Despite the availability of the crystal structure of the MoFe protein, suprisingly little is known about the molecular details of catalysis at the active site, and no small-molecule substrate or inhibitor had ever been shown to directly interact with a protein-bound cluster of the functioning enzyme, until our electron-nuclear double resonance(ENDOR) study of CO-inhibited nitrogenase.(omitted)

  • PDF

Retrospective analyses of the bottleneck in purification of eukaryotic proteins from Escherichia coli as affected by molecular weight, cysteine content and isoelectric point

  • Jeon, Won-Bae
    • BMB Reports
    • /
    • v.43 no.5
    • /
    • pp.319-324
    • /
    • 2010
  • Experimental bioinformatics data obtained from an E. coli cell-based eukaryotic protein purification experiment were analyzed in order to identify any bottleneck as well as the factors affecting the target purification. All targets were expressed as His-tagged maltose-binding protein (MBP) fusion constructs and were initially purified by immobilized metal affinity chromatography (IMAC). The targets were subsequently separated from the His-tagged MBP through TEV protease cleavage followed by a second IMAC isolation. Of the 743 total purification trials, 342 yielded more than 3 mg of target proteins for structural studies. The major reason for failure of target purification was poor TEV proteolysis. The overall success rate for target purification decreased linearly as cysteine content or isoelectric point (pI) of the target increased. This pattern of pI versus overall success rate strongly suggests that pI should be incorporated into target scoring criteria with a threshold value.

Structural Analysis of [Cu(II)-amyloidogenic peptide] Complexes

  • Cha, Eugene;Seo, Jae-Hong;Kim, Ho-Tae
    • Mass Spectrometry Letters
    • /
    • v.9 no.1
    • /
    • pp.17-23
    • /
    • 2018
  • Studies on the interactions of amyloidogenic proteins with trace metals, such as copper, have indicated that the metal ions perform a critical function in the early oligomerization process. Herein, we investigate the effects of Cu(II) ions on the active sequence regions of amyloidogenic proteins using electrospray ionization mass spectrometry (ESI-MS) and collision induced dissociation tandem MS (CID-MS/MS). We chose three amyloidogenic peptides NNQQNY, LYQLEN, and VQIVYK from yeast prion like protein Sup35, insulin chain A, and tau protein, respectively. [Cu-peptide] complexes for all three peptides were observed in the mass spectra. The mass spectra also show that increasing Cu(II) concentrations decrease the population of existing peptide oligomers. The tandem mass spectrum of NNQQNY shows preferential binding for the N-terminal region. All three peptides are likely to appear to be in a Cu-monomer-monomer (Cu-M-M) structure instead of a monomer-Cu-monomer (M-Cu-M) structure.