• Title/Summary/Keyword: metal wire

Search Result 498, Processing Time 0.025 seconds

A comparative study of frictional force in self-ligating brackets according to the bracket-archwire angulation, bracket material, and wire type

  • Lee, Souk Min;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.45 no.1
    • /
    • pp.13-19
    • /
    • 2015
  • Objective: This study aimed to compare the frictional force (FR) in self-ligating brackets among different bracket-archwire angles, bracket materials, and archwire types. Methods: Passive and active metal self-ligating brackets and active ceramic self-ligating brackets were included as experimental groups, while conventional twin metal brackets served as a control group. All brackets were maxillary premolar brackets with 0.022 inch [in] slots and a $-7^{\circ}$ torque. The orthodontic wires used included 0.018 round and $0.019{\times}0.025$ in rectangular stainless steel wires. The FR was measured at $0^{\circ}$, $5^{\circ}$, and $10^{\circ}$ angulations as the wire was drawn through the bracket slots after attaching brackets from each group to the universal testing machine. Static and kinetic FRs were also measured. Results: The passive self-ligating brackets generated a lower FR than all the other brackets. Static and kinetic FRs generally increased with an increase in the bracket-archwire angulation, and the rectangular wire caused significantly higher static and kinetic FRs than the round wire (p < 0.001). The metal passive self-ligating brackets exhibited the lowest static FR at the $0^{\circ}$ angulation and a lower increase in static and kinetic FRs with an increase in bracket-archwire angulation than the other brackets, while the conventional twin brackets showed a greater increase than all three experimental brackets. Conclusions: The passive self-ligating brackets showed the lowest FR in this study. Self-ligating brackets can generate varying FRs in vitro according to the wire size, surface characteristics, and bracket-archwire angulation.

Influence of Electrical Conductivity of Dielectric on Machinability of W-EDM (방전액의 전도율이 와이어방전가공성에 미치는 영향)

  • Kim, Chang-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.322-328
    • /
    • 2002
  • In wire-electrical discharge machining (W-EDM), the dielectric plays an important role as the working fluid. It affects the material removal rate and the properties of the machined surface. This paper deals with the effects of the electrical conductivity of dielectric and cobalt percentage of sintered carbides on the machining characteristics and the machined surface integrities with deionized water as dielectric. A series of experiments have been performed on sintered carbides having different cobalt contents. Experimental results show that a higher cobalt content of WC decreases the metal removal rate and worsens the surface quality. Lower electrical conductivity of the dielectric results in a higher metal removal rate as the gap between wire electrode and workpiece reduced. Especially, the surface integrities of rough-cut workpiece, wire electrode, and debris were analyzed also through scanning electron microscopy(SEM) and surface roughness tester. By energy dispersive spectrometry(EDS), it is confirmed that micro cracks and some of electrode material are found on the workpiece surface.

COMPARISON OF THE FRICTIONAL RESISTANCE BETWEEN ORTHODONTIC BRACKET & ARCHWIRE (교정용 BRACKET과 ARCHWIRE 사이의 마찰저항에 대한 비교연구)

  • Sung, Hyun Mee;Park, Young Chel
    • The korean journal of orthodontics
    • /
    • v.21 no.3
    • /
    • pp.543-560
    • /
    • 1991
  • Practitioners are aware of the presence of friction between bracket system and archwire during sliding movement of teeth. Clinically a mesiodistally applied force must exceed the frictional force to produce a tooth movement. The objective of this study were to determine, on a dry condition, changes in magnitude of friction with respect to load, 3rd order inclination (Torque), archwire materials and ligature type. Three wire alloys (Stainless Steel, TMA, NiTi) in two wire sizes (.016, .016x, .022 inch) were examined respect to two bracket system (Straight, Standard), and two ligature type (Metal, Plastic ligature) at three levels of load (100g, 150g, 200g). The results were as follows; 1. Frictional resistance was found to increase with increasing load for S.S., TMA, NiTi. 2. The straight bracket system was exhibited more frictional force than standard bracket system for .016x, .022 S.S. tightly ligated metal ligature. But, torque difference did not increase friction for loose metal ligature & plastic ligature. 3. Regardless of the ligature type, torque and load, stainless steel wire sliding against stainless steel exhibited the lowest friction, and TMA sliding against stainless steel exhibited the highest friction. 4. The loose stainless steel ligature generated lower frictional resistance than plastic ligature in all experimental groups. 5. The following factors affected friction in decreasing order; wire material ligature type, and load.

  • PDF

AN EXPERIMENTAL STUDY ON PHYSICAL PROPERTIES OF WROUGHT WIRE CLASP (WROUGHT WIRE CLASP의 물리적 성질에 관한 실험적 연구)

  • Lee, Kwang-Hee;Chang, Ik-Tae;Kim, Kwang-Nam
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.27 no.2
    • /
    • pp.201-218
    • /
    • 1989
  • The purpose of this study was to evaluate the influence of attachment technique on mechanical properties and microstructures of wrought wires. The wires tested in this study were precious metal wires: PGP (Platinum-Gold -Palladium), Elastic #12, Denture Clasp, Standard, Jelenko No. 2, Degulor-Klammerdraht, DM (Dong Myung) and base metal wire : Ticonium. Each wire was divided into three groups, and each group was heat treated as embedding, cast to, and soldering state. Heat treated sample was evaluated by tensile test, bending test, microhardness test, element analysis and microstructure test. The obtained results were as follows: 1. In tensile test, cast to and soldering procedures have an effect on wrought wire clasp as hardening heat treatment. 2. Maximum bending strength was significantly increased in Elastic #12, Denture Clasp, Standard, and DM in cast to procedure. 3. Ticonium showed the highest Victors hardness number, followed by PGP, and there was no significant difference in other wrought wires. In cast to and soldering procedure, Victors hardness number was significantly increased in precious wrought wires. 4. The precious wrought wire showed typical fibrous structure and this was disappeared in cast to and soldering procedure. But physical properties were not influenced by this phenomenon.

  • PDF

Preparation of Nano Wire by Anodic Oxidation II. Production of Nano Wire Using Anodic Alumina Template (양극산화법에 의한 나노와이어 제조 II. 알루미나 템플레이트를 이용한 나노와이어 제조)

  • Jo, Su-Haeng;O, Han-Jun;Park, Chi-Seon;Jang, Jae-Myeong;Jo, Nam-Don;Ji, Chung-Su
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.89-93
    • /
    • 2002
  • To investigate the effect of properties of pores in anodic alumina template(AAT) on the formation and characteristics of metal nano wires, Cu and Ni nano wires were manufactured using anodic alumina template formed in various electrolytes. The characteristics of prepared metal nano wires using AAT could be replicated from those of pores in AAT. The diameters of nano wires could be controlled by the widening process of anodic porous film in $H_3PO_4$ solution. The shape ratio of the nano wire was shown to be $170{\pm}30$ for Ni nano wire formed by AAT made in sulfuric acid.

The Latest Technology Development Trends of Flux Cored Wire (Flux Cored Wire의 최신 기술 개발 동향)

  • Im, Hee-Dae;Choi, Chang-Hyun;Jung, Jae-Heon;Kil, Woong
    • Journal of Welding and Joining
    • /
    • v.34 no.6
    • /
    • pp.1-10
    • /
    • 2016
  • Flux Cored Wire is the most widely used welding material for Flux Cored Arc Welding these days. This paper introduces the technical aspects of manufacturing FCW and the development trend of FCW for each type of steel and metal. The studies are ongoing to lower the production cost of seamless-type FCW since it has not been generally used in welding shops so far because of it high cost even though the seamless-type FCW has various advantages than folded-type FCW in terms of manufacturing technology. Meanwhile, a technical research has been carried out to develop a rutile type of FCW products which satisfies high toughness after post heat treatment. In addition, for high-speed fillet welding, there has been a development of welding materials which can be welded in Single Auto-Carriage 100 cpm or more and up to Twin Tandem 200 cpm without occurring any welding defect in order to improve the welding productivity. As Zn coated steel is being used recently to improve the corrosion resistance of the automotive parts, a research and development for Metal Cored Wire has been conducted to reduce the Si island produced in welding operation than those produced when using the former solid wires. A development of welding material that guarantees CTOD performance beyond $-40^{\circ}C$ CTOD to $-60^{\circ}C$ is underway by different steel grades, and FCW for super austenitic stainless steel is being developed as the corrosion resistant steel has been upgraded.

Design of Metal Cored Wire for Erosion Resistant Overlay Welding

  • Kim, Jun-Ki;Kim, In-Ju;Kim, Ki-Nam;Kim, Ji-Hui;Kim, Seon-Jin
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.202-204
    • /
    • 2009
  • Erosion is a common failure mode of materials frequently encountered in plant and power industry. Although the erosion resistance of Fe-base alloy has been inferior to the other expensive materials, it is expected that the strain-induced martensitic transformation can impart high erosion resistance to Fe-base alloy. The key technology to develop Fe-base metal cored welding wire for erosion resistant overlay welding may include the strain-induced metallurgy for hardening rate control and the welding flux metallurgy for dilution control. Sophisticated studies showed that the strain-induced martensitic transformation behavior was related to the critical strain energy which was dependent on the alloy composition. Dilution and bead shape of overlay weld were proved to be affected by metal transfer mode during gas tungsten arc welding and elements in welding fluxes. It was considered that the highly erosion resistant Fe-base overlay weld could be achieved by precise control of alloy composition to have proper level of critical strain energy for energy absorption and welding flux formulation to have small amount of deoxidizing metallic elements for dilution.

  • PDF

Stress Variation Characteristics of a High-Pressure Hose with Respect to Wire Braid Angle (강선의 편조각도에 따른 고압호스의 응력변화 특성)

  • Kim, H.J.;Koh, S.W.;Kim, B.T.
    • Journal of Power System Engineering
    • /
    • v.9 no.3
    • /
    • pp.71-78
    • /
    • 2005
  • A high-pressure hose includes rebar layers of the synthetic fiber such as nylon or a steel wire to control internal pressure. The hose assembly is manufactured through the swaging process to clamp the hose into the metal fittings. Usually, the hose behavior is affected by the resultant of the longitudinal and circumferential forces produced by the internal pressure. The rebar layers can appear the most ideal rebar effect when they are arranged to the same direction as the resultant force. The braid angle applied in the rebar layers is an important factor in determining ultimate burst pressure and overall hose life. Failure can occur on the contacted parts of a hose with the metal fittings under severe operating conditions such as high pressure and temperature of the inner fluid. In this paper, the mechanical behavior between the hose and the metal fittings during the swaging process and the stress variation characteristics of a high-pressure hose under a constant applied pressure are analyzed with respect to the braid angle of steel wire using the finite element method.

  • PDF